利用超声波频谱仪监测气泡塔中的空气流量

Fluids Pub Date : 2024-07-18 DOI:10.3390/fluids9070163
Ediguer E. Franco, Sebastián Henao Santa, John Jairo Cabrera, S. Laín
{"title":"利用超声波频谱仪监测气泡塔中的空气流量","authors":"Ediguer E. Franco, Sebastián Henao Santa, John Jairo Cabrera, S. Laín","doi":"10.3390/fluids9070163","DOIUrl":null,"url":null,"abstract":"This work demonstrates the use of an ultrasonic methodology to monitor bubble density in a water column. A flow regime with droplet size distribution between 0.2 and 2 mm was studied. This range is of particular interest because it frequently appears in industrial flows. Ultrasound is typically used when the size of the bubbles is much larger than the wavelength (low frequency limit). In this study, the radius of the bubbles ranges between 0.6 and 6.8 times the wavelength, where wave propagation becomes a complex phenomenon, making existing analytical methods difficult to apply. Measurements in transmission–reception mode with ultrasonic transducers operating at frequencies of 2.25 and 5.0 MHz were carried out for different superficial velocities. The results showed that a time-averaging scheme is necessary and that wave parameters such as propagation velocity and the slope of the phase spectrum are related to the number of bubbles in the column. The proposed methodology has the potential for application in industrial environments.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":" 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air Flow Monitoring in a Bubble Column Using Ultrasonic Spectrometry\",\"authors\":\"Ediguer E. Franco, Sebastián Henao Santa, John Jairo Cabrera, S. Laín\",\"doi\":\"10.3390/fluids9070163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates the use of an ultrasonic methodology to monitor bubble density in a water column. A flow regime with droplet size distribution between 0.2 and 2 mm was studied. This range is of particular interest because it frequently appears in industrial flows. Ultrasound is typically used when the size of the bubbles is much larger than the wavelength (low frequency limit). In this study, the radius of the bubbles ranges between 0.6 and 6.8 times the wavelength, where wave propagation becomes a complex phenomenon, making existing analytical methods difficult to apply. Measurements in transmission–reception mode with ultrasonic transducers operating at frequencies of 2.25 and 5.0 MHz were carried out for different superficial velocities. The results showed that a time-averaging scheme is necessary and that wave parameters such as propagation velocity and the slope of the phase spectrum are related to the number of bubbles in the column. The proposed methodology has the potential for application in industrial environments.\",\"PeriodicalId\":510749,\"journal\":{\"name\":\"Fluids\",\"volume\":\" 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids9070163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9070163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作展示了使用超声波方法监测水柱中的气泡密度。研究了液滴大小分布在 0.2 至 2 毫米之间的流动状态。这个范围特别值得关注,因为它经常出现在工业水流中。当气泡的尺寸远大于波长(低频极限)时,通常会使用超声波。在这项研究中,气泡的半径范围在 0.6 到 6.8 倍波长之间,在这个范围内,波的传播成为一种复杂的现象,使得现有的分析方法难以应用。使用频率为 2.25 和 5.0 MHz 的超声波传感器,以传输-接收模式对不同的表层速度进行了测量。结果表明,时间平均方案是必要的,波参数(如传播速度和相位频谱斜率)与液柱中的气泡数量有关。所提出的方法具有在工业环境中应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Air Flow Monitoring in a Bubble Column Using Ultrasonic Spectrometry
This work demonstrates the use of an ultrasonic methodology to monitor bubble density in a water column. A flow regime with droplet size distribution between 0.2 and 2 mm was studied. This range is of particular interest because it frequently appears in industrial flows. Ultrasound is typically used when the size of the bubbles is much larger than the wavelength (low frequency limit). In this study, the radius of the bubbles ranges between 0.6 and 6.8 times the wavelength, where wave propagation becomes a complex phenomenon, making existing analytical methods difficult to apply. Measurements in transmission–reception mode with ultrasonic transducers operating at frequencies of 2.25 and 5.0 MHz were carried out for different superficial velocities. The results showed that a time-averaging scheme is necessary and that wave parameters such as propagation velocity and the slope of the phase spectrum are related to the number of bubbles in the column. The proposed methodology has the potential for application in industrial environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Aerodynamic Shape and Aero-Structural Optimization: Applications from Ahmed Body to NACA 0012 Airfoil and Wind Turbine Blades Flowfield and Noise Dynamics of Supersonic Rectangular Impinging Jets: Major versus Minor Axis Orientations Rim Driven Thruster as Innovative Propulsion Element for Dual Phase Flows in Plug Flow Reactors Investigation of Convective Heat Transfer and Stability on a Rotating Disk: A Novel Experimental Method and Thermal Modeling Visualization and Quantification of Facemask Leakage Flows and Interpersonal Transmission with Varying Face Coverings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1