计算机图像视觉技术在音乐教育和教学中的实际应用和案例分析

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Cases on Information Technology Pub Date : 2024-07-17 DOI:10.4018/jcit.347916
Donglin Li
{"title":"计算机图像视觉技术在音乐教育和教学中的实际应用和案例分析","authors":"Donglin Li","doi":"10.4018/jcit.347916","DOIUrl":null,"url":null,"abstract":"Exploring how to utilize images to enrich music teaching content and provide a more visually impactful learning experience is an important topic. Therefore, this paper introduces a convolutional neural network-based algorithm for extracting audio features to construct a music visualization model. By identifying features such as note pitches, it enhances pitch recognition and integrates with CNN algorithms for audio information visualization. Experimental results demonstrate an accuracy rate exceeding 97%, showcasing the significant advantage of this method in visualizing audio information in music multimedia classrooms. It provides technical support for bringing a new visual experience to music education.","PeriodicalId":43384,"journal":{"name":"Journal of Cases on Information Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Application and Case Analysis of Computer Image Vision Technology in Music Education and Teaching\",\"authors\":\"Donglin Li\",\"doi\":\"10.4018/jcit.347916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring how to utilize images to enrich music teaching content and provide a more visually impactful learning experience is an important topic. Therefore, this paper introduces a convolutional neural network-based algorithm for extracting audio features to construct a music visualization model. By identifying features such as note pitches, it enhances pitch recognition and integrates with CNN algorithms for audio information visualization. Experimental results demonstrate an accuracy rate exceeding 97%, showcasing the significant advantage of this method in visualizing audio information in music multimedia classrooms. It provides technical support for bringing a new visual experience to music education.\",\"PeriodicalId\":43384,\"journal\":{\"name\":\"Journal of Cases on Information Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cases on Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jcit.347916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cases on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jcit.347916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

探索如何利用图像丰富音乐教学内容,提供更具视觉冲击力的学习体验是一个重要课题。因此,本文介绍了一种基于卷积神经网络的算法,用于提取音频特征以构建音乐可视化模型。通过识别音符音高等特征,该算法增强了音高识别能力,并与用于音频信息可视化的 CNN 算法相结合。实验结果表明,该方法的准确率超过 97%,在音乐多媒体教室的音频信息可视化方面具有显著优势。它为音乐教育带来全新的视觉体验提供了技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical Application and Case Analysis of Computer Image Vision Technology in Music Education and Teaching
Exploring how to utilize images to enrich music teaching content and provide a more visually impactful learning experience is an important topic. Therefore, this paper introduces a convolutional neural network-based algorithm for extracting audio features to construct a music visualization model. By identifying features such as note pitches, it enhances pitch recognition and integrates with CNN algorithms for audio information visualization. Experimental results demonstrate an accuracy rate exceeding 97%, showcasing the significant advantage of this method in visualizing audio information in music multimedia classrooms. It provides technical support for bringing a new visual experience to music education.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cases on Information Technology
Journal of Cases on Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.60
自引率
0.00%
发文量
64
期刊介绍: JCIT documents comprehensive, real-life cases based on individual, organizational and societal experiences related to the utilization and management of information technology. Cases published in JCIT deal with a wide variety of organizations such as businesses, government organizations, educational institutions, libraries, non-profit organizations. Additionally, cases published in JCIT report not only successful utilization of IT applications, but also failures and mismanagement of IT resources and applications.
期刊最新文献
Enhanced SVM Algorithm-Based Dynamic Early Warning System for College English Ideological and Political Course Education Using Machine Learning Optimization Method of College Students' Entrepreneurial Path Based on Improved Multi-Objective Gray Wolf Algorithm Research on Library Resource Management Based on Modern Information Technology and Reconfigurable Mobile Information System Online and Offline Integration Scheme of College English Education Under Big Data Technology Enterprise Digital Transformation and Environmental Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1