释放细胞涂色测定在化合物活性和危害预测方面的潜力

IF 3.6 Q2 TOXICOLOGY Frontiers in toxicology Pub Date : 2024-07-17 DOI:10.3389/ftox.2024.1401036
Floriane Odje, David Meijer, E. von Coburg, J. V. D. van der Hooft, Sebastian Dunst, M. Medema, Andrea Volkamer
{"title":"释放细胞涂色测定在化合物活性和危害预测方面的潜力","authors":"Floriane Odje, David Meijer, E. von Coburg, J. V. D. van der Hooft, Sebastian Dunst, M. Medema, Andrea Volkamer","doi":"10.3389/ftox.2024.1401036","DOIUrl":null,"url":null,"abstract":"The cell painting (CP) assay has emerged as a potent imaging-based high-throughput phenotypic profiling (HTPP) tool that provides comprehensive input data for in silico prediction of compound activities and potential hazards in drug discovery and toxicology. CP enables the rapid, multiplexed investigation of various molecular mechanisms for thousands of compounds at the single-cell level. The resulting large volumes of image data provide great opportunities but also pose challenges to image and data analysis routines as well as property prediction models. This review addresses the integration of CP-based phenotypic data together with or in substitute of structural information from compounds into machine (ML) and deep learning (DL) models to predict compound activities for various human-relevant disease endpoints and to identify the underlying modes-of-action (MoA) while avoiding unnecessary animal testing. The successful application of CP in combination with powerful ML/DL models promises further advances in understanding compound responses of cells guiding therapeutic development and risk assessment. Therefore, this review highlights the importance of unlocking the potential of CP assays when combined with molecular fingerprints for compound evaluation and discusses the current challenges that are associated with this approach.","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unleashing the potential of cell painting assays for compound activities and hazards prediction\",\"authors\":\"Floriane Odje, David Meijer, E. von Coburg, J. V. D. van der Hooft, Sebastian Dunst, M. Medema, Andrea Volkamer\",\"doi\":\"10.3389/ftox.2024.1401036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cell painting (CP) assay has emerged as a potent imaging-based high-throughput phenotypic profiling (HTPP) tool that provides comprehensive input data for in silico prediction of compound activities and potential hazards in drug discovery and toxicology. CP enables the rapid, multiplexed investigation of various molecular mechanisms for thousands of compounds at the single-cell level. The resulting large volumes of image data provide great opportunities but also pose challenges to image and data analysis routines as well as property prediction models. This review addresses the integration of CP-based phenotypic data together with or in substitute of structural information from compounds into machine (ML) and deep learning (DL) models to predict compound activities for various human-relevant disease endpoints and to identify the underlying modes-of-action (MoA) while avoiding unnecessary animal testing. The successful application of CP in combination with powerful ML/DL models promises further advances in understanding compound responses of cells guiding therapeutic development and risk assessment. Therefore, this review highlights the importance of unlocking the potential of CP assays when combined with molecular fingerprints for compound evaluation and discusses the current challenges that are associated with this approach.\",\"PeriodicalId\":73111,\"journal\":{\"name\":\"Frontiers in toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ftox.2024.1401036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ftox.2024.1401036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞涂色(CP)检测已成为一种有效的基于成像的高通量表型分析(HTPP)工具,可为药物发现和毒理学中的化合物活性和潜在危害的硅学预测提供全面的输入数据。CP 能够在单细胞水平上对数千种化合物的各种分子机制进行快速、多重研究。由此产生的大量图像数据提供了巨大的机遇,但也给图像和数据分析程序以及性质预测模型带来了挑战。本综述探讨了如何将基于 CP 的表型数据与化合物的结构信息整合到机器(ML)和深度学习(DL)模型中,或用其替代化合物的结构信息,以预测化合物对各种人类相关疾病终点的活性,并确定潜在的作用模式(MoA),同时避免不必要的动物试验。CP 与强大的 ML/DL 模型相结合的成功应用有望进一步推动对细胞化合物反应的理解,从而指导治疗开发和风险评估。因此,本综述强调了在结合分子指纹图谱进行化合物评估时发掘 CP 检测潜力的重要性,并讨论了与这种方法相关的当前挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unleashing the potential of cell painting assays for compound activities and hazards prediction
The cell painting (CP) assay has emerged as a potent imaging-based high-throughput phenotypic profiling (HTPP) tool that provides comprehensive input data for in silico prediction of compound activities and potential hazards in drug discovery and toxicology. CP enables the rapid, multiplexed investigation of various molecular mechanisms for thousands of compounds at the single-cell level. The resulting large volumes of image data provide great opportunities but also pose challenges to image and data analysis routines as well as property prediction models. This review addresses the integration of CP-based phenotypic data together with or in substitute of structural information from compounds into machine (ML) and deep learning (DL) models to predict compound activities for various human-relevant disease endpoints and to identify the underlying modes-of-action (MoA) while avoiding unnecessary animal testing. The successful application of CP in combination with powerful ML/DL models promises further advances in understanding compound responses of cells guiding therapeutic development and risk assessment. Therefore, this review highlights the importance of unlocking the potential of CP assays when combined with molecular fingerprints for compound evaluation and discusses the current challenges that are associated with this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
A new approach methodology to identify tumorigenic chemicals using short-term exposures and transcript profiling. A systematic review and meta-analysis of the impact of triclosan exposure on human semen quality. Reproductive toxicology: keeping up with our changing world. Microplastics and nanoplastics in cardiovascular disease-a narrative review with worrying links. Ergot alkaloid control in biotechnological processes and pharmaceuticals (a mini review).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1