{"title":"用于增强现实显示器的紧凑型高效硅基液晶","authors":"Zhenyi Luo, Yuqiang Ding, Fenglin Peng, Ziqian He, Yun Wang, Shin‐Tson Wu","doi":"10.3390/photonics11070669","DOIUrl":null,"url":null,"abstract":"Compact and high efficiency microdisplays are essential for lightweight augmented reality (AR) glasses to ensure longtime wearing comfort. Liquid-crystal-on-silicon (LCoS) is a promising candidate because of its high-resolution density, high brightness, and low cost. However, its bulky illumination system with a polarizing beam splitter (PBS) cube remains an urgent issue to be overcome. To reduce the volume of the LCoS illumination system, here, we propose a compact structure with four thin PBS cuboids. Through simulations, the optical efficiency of 36.7% for an unpolarized input light can be achieved while maintaining reasonably good spatial uniformity. Such a novel design is expected to have a significant impact on future compact and lightweight AR glasses.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact and High-Efficiency Liquid-Crystal-on-Silicon for Augmented Reality Displays\",\"authors\":\"Zhenyi Luo, Yuqiang Ding, Fenglin Peng, Ziqian He, Yun Wang, Shin‐Tson Wu\",\"doi\":\"10.3390/photonics11070669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compact and high efficiency microdisplays are essential for lightweight augmented reality (AR) glasses to ensure longtime wearing comfort. Liquid-crystal-on-silicon (LCoS) is a promising candidate because of its high-resolution density, high brightness, and low cost. However, its bulky illumination system with a polarizing beam splitter (PBS) cube remains an urgent issue to be overcome. To reduce the volume of the LCoS illumination system, here, we propose a compact structure with four thin PBS cuboids. Through simulations, the optical efficiency of 36.7% for an unpolarized input light can be achieved while maintaining reasonably good spatial uniformity. Such a novel design is expected to have a significant impact on future compact and lightweight AR glasses.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11070669\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11070669","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
为确保长时间佩戴的舒适性,轻巧、高效的微型显示器对于轻型增强现实(AR)眼镜至关重要。硅基液晶(LCoS)具有高分辨率密度、高亮度和低成本的特点,是一种很有前途的候选材料。然而,其带有偏振分光镜(PBS)立方体的笨重照明系统仍是一个亟待解决的问题。为了减小 LCoS 照明系统的体积,我们在此提出了一种具有四个薄 PBS 立方体的紧凑型结构。通过仿真,在保持相当好的空间均匀性的同时,非偏振输入光的光学效率可达 36.7%。这种新颖的设计有望对未来紧凑轻便的 AR 眼镜产生重大影响。
Compact and High-Efficiency Liquid-Crystal-on-Silicon for Augmented Reality Displays
Compact and high efficiency microdisplays are essential for lightweight augmented reality (AR) glasses to ensure longtime wearing comfort. Liquid-crystal-on-silicon (LCoS) is a promising candidate because of its high-resolution density, high brightness, and low cost. However, its bulky illumination system with a polarizing beam splitter (PBS) cube remains an urgent issue to be overcome. To reduce the volume of the LCoS illumination system, here, we propose a compact structure with four thin PBS cuboids. Through simulations, the optical efficiency of 36.7% for an unpolarized input light can be achieved while maintaining reasonably good spatial uniformity. Such a novel design is expected to have a significant impact on future compact and lightweight AR glasses.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.