指针态的性质及其在宏观量子相干中的作用

P. Turner, Laurent Nottale
{"title":"指针态的性质及其在宏观量子相干中的作用","authors":"P. Turner, Laurent Nottale","doi":"10.3390/condmat9030029","DOIUrl":null,"url":null,"abstract":"This article begins with an interdisciplinary review of a hydrodynamic approach to understanding the origins and nature of macroscopic quantum phenomena in high-temperature superconductivity, superfluidity, turbulence and biological systems. Building on this review, we consider new theoretical insights into the origin and nature of pointer states and their role in the emergence of quantum systems. The approach includes a theory of quantum coherence underpinned by turbulence, generated by a field of pointer states, which take the form of recirculating, spin-1/2 vortices (toroids), interconnected via a cascade of spin-1 vortices. Decoherence occurs when the bosonic network connecting pointer states is disrupted, leading to their localisation. Building further on this work, we explore how quantum particles (in the form of different vortex structures) could emerge as the product of a causal dynamic process, within a turbulent (fractal) spacetime. The resulting particle structures offer new insights into intrinsic spin, the probabilistic nature of the wave function and how we might consider pointer states within the standard “point source” representation of a quantum particle, which intuitively requires a more complexed description.","PeriodicalId":505256,"journal":{"name":"Condensed Matter","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Nature of Pointer States and Their Role in Macroscopic Quantum Coherence\",\"authors\":\"P. Turner, Laurent Nottale\",\"doi\":\"10.3390/condmat9030029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article begins with an interdisciplinary review of a hydrodynamic approach to understanding the origins and nature of macroscopic quantum phenomena in high-temperature superconductivity, superfluidity, turbulence and biological systems. Building on this review, we consider new theoretical insights into the origin and nature of pointer states and their role in the emergence of quantum systems. The approach includes a theory of quantum coherence underpinned by turbulence, generated by a field of pointer states, which take the form of recirculating, spin-1/2 vortices (toroids), interconnected via a cascade of spin-1 vortices. Decoherence occurs when the bosonic network connecting pointer states is disrupted, leading to their localisation. Building further on this work, we explore how quantum particles (in the form of different vortex structures) could emerge as the product of a causal dynamic process, within a turbulent (fractal) spacetime. The resulting particle structures offer new insights into intrinsic spin, the probabilistic nature of the wave function and how we might consider pointer states within the standard “point source” representation of a quantum particle, which intuitively requires a more complexed description.\",\"PeriodicalId\":505256,\"journal\":{\"name\":\"Condensed Matter\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/condmat9030029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/condmat9030029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先对流体力学方法进行了跨学科回顾,以了解高温超导、超流体、湍流和生物系统中宏观量子现象的起源和性质。在此综述的基础上,我们考虑了关于指针态的起源和性质及其在量子系统出现过程中的作用的新理论见解。这种方法包括以湍流为基础的量子相干性理论,湍流由指针态场产生,指针态场的形式是再循环的自旋-1/2 涡旋(环状体),通过自旋-1 涡旋的级联相互连接。当连接指针态的玻色网络被破坏,导致指针态定位时,就会发生退相干现象。在这项工作的基础上,我们进一步探索了量子粒子(以不同涡旋结构的形式)如何在湍流(分形)时空中作为因果动态过程的产物出现。由此产生的粒子结构为内在自旋、波函数的概率性质以及我们如何在量子粒子的标准 "点源 "表示法中考虑指针状态提供了新的见解,直观地说,这需要更复杂的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Nature of Pointer States and Their Role in Macroscopic Quantum Coherence
This article begins with an interdisciplinary review of a hydrodynamic approach to understanding the origins and nature of macroscopic quantum phenomena in high-temperature superconductivity, superfluidity, turbulence and biological systems. Building on this review, we consider new theoretical insights into the origin and nature of pointer states and their role in the emergence of quantum systems. The approach includes a theory of quantum coherence underpinned by turbulence, generated by a field of pointer states, which take the form of recirculating, spin-1/2 vortices (toroids), interconnected via a cascade of spin-1 vortices. Decoherence occurs when the bosonic network connecting pointer states is disrupted, leading to their localisation. Building further on this work, we explore how quantum particles (in the form of different vortex structures) could emerge as the product of a causal dynamic process, within a turbulent (fractal) spacetime. The resulting particle structures offer new insights into intrinsic spin, the probabilistic nature of the wave function and how we might consider pointer states within the standard “point source” representation of a quantum particle, which intuitively requires a more complexed description.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remarks on the Quantum Effects of Screw Dislocation Topology and Missing Magnetic Flux Enhancing the Photoelectrochemical Performance of a Superlattice p–n Heterojunction CuFe2O4/ZnFe2O4 Electrode for Hydrogen Production The EuAPS Betatron Radiation Source: Status Update and Photon Science Perspectives The Nature of Pointer States and Their Role in Macroscopic Quantum Coherence Microstructure and Unusual Ferromagnetism of Epitaxial SnO2 Films Heavily Implanted with Co Ions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1