同步辐射 X 射线荧光人颈动脉粥样硬化斑块图像特征的聚类方法

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-07-17 DOI:10.1002/aisy.202400052
Nathaly De La Rosa, Niccolò Peruzzi, Till Dreier, My Truong, Ulf Johansson, Sebastian Kalbfleisch, Isabel Gonçalves, Martin Bech
{"title":"同步辐射 X 射线荧光人颈动脉粥样硬化斑块图像特征的聚类方法","authors":"Nathaly De La Rosa,&nbsp;Niccolò Peruzzi,&nbsp;Till Dreier,&nbsp;My Truong,&nbsp;Ulf Johansson,&nbsp;Sebastian Kalbfleisch,&nbsp;Isabel Gonçalves,&nbsp;Martin Bech","doi":"10.1002/aisy.202400052","DOIUrl":null,"url":null,"abstract":"<p>This study employs computational algorithms to automatically identify and classify features in X-Ray fluorescence (XRF) microscopy images. Principal component analysis (PCA) and unsupervised machine learning algorithms, such as Gaussian mixture (GM) clustering, are implemented to label features on a collection of XRF maps of human atherosclerotic plaque samples. The investigation involves the hard X-Ray nanoprobe (NanoMAX) at MAX IV synchrotron radiation facility, utilizing scanning transmission X-Ray microscopy (STXM) and XRF techniques. The analysis covers regions of interest scanned by the beam with a step size of 200 nm, yielding XRF maps of elements like calcium, iron, and zinc. These maps reveal intricate structures unsuitable for manual labeling. However, they can be accurately classified in an automated fashion using GM. Prior to clustering, PCA is used to deal with repeated patterns and background areas. The resulting clusters are associated with different types of features, which can be identified as specific tissues confirmed by histology. Regions of high concentrations of phosphorus, sulfur, calcium, and iron are found in the samples. These regions are also observed in the STXM results as spots of low transmission that typically are associated with calcium deposits only.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400052","citationCount":"0","resultStr":"{\"title\":\"Clustering Methods for the Characterization of Synchrotron Radiation X-Ray Fluorescence Images of Human Carotid Atherosclerotic Plaque\",\"authors\":\"Nathaly De La Rosa,&nbsp;Niccolò Peruzzi,&nbsp;Till Dreier,&nbsp;My Truong,&nbsp;Ulf Johansson,&nbsp;Sebastian Kalbfleisch,&nbsp;Isabel Gonçalves,&nbsp;Martin Bech\",\"doi\":\"10.1002/aisy.202400052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study employs computational algorithms to automatically identify and classify features in X-Ray fluorescence (XRF) microscopy images. Principal component analysis (PCA) and unsupervised machine learning algorithms, such as Gaussian mixture (GM) clustering, are implemented to label features on a collection of XRF maps of human atherosclerotic plaque samples. The investigation involves the hard X-Ray nanoprobe (NanoMAX) at MAX IV synchrotron radiation facility, utilizing scanning transmission X-Ray microscopy (STXM) and XRF techniques. The analysis covers regions of interest scanned by the beam with a step size of 200 nm, yielding XRF maps of elements like calcium, iron, and zinc. These maps reveal intricate structures unsuitable for manual labeling. However, they can be accurately classified in an automated fashion using GM. Prior to clustering, PCA is used to deal with repeated patterns and background areas. The resulting clusters are associated with different types of features, which can be identified as specific tissues confirmed by histology. Regions of high concentrations of phosphorus, sulfur, calcium, and iron are found in the samples. These regions are also observed in the STXM results as spots of low transmission that typically are associated with calcium deposits only.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用计算算法自动识别 X 射线荧光(XRF)显微镜图像中的特征并对其进行分类。该研究采用主成分分析(PCA)和无监督机器学习算法(如高斯混合(GM)聚类)来标记人类动脉粥样硬化斑块样本的 XRF 图谱集合上的特征。这项研究涉及 MAX IV 同步辐射设施的硬 X 射线纳米探针(NanoMAX),利用了扫描透射 X 射线显微镜(STXM)和 XRF 技术。分析范围包括光束以 200 纳米的步长扫描的感兴趣区域,得出钙、铁和锌等元素的 XRF 图谱。这些地图显示了不适合人工标记的复杂结构。不过,可以使用 GM 自动对它们进行准确分类。在进行聚类之前,先使用 PCA 处理重复模式和背景区域。由此产生的聚类与不同类型的特征相关联,这些特征可通过组织学确认为特定的组织。在样本中发现了磷、硫、钙和铁的高浓度区域。这些区域在 STXM 结果中也可观察到,通常只与钙沉积物相关的低透射点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering Methods for the Characterization of Synchrotron Radiation X-Ray Fluorescence Images of Human Carotid Atherosclerotic Plaque

This study employs computational algorithms to automatically identify and classify features in X-Ray fluorescence (XRF) microscopy images. Principal component analysis (PCA) and unsupervised machine learning algorithms, such as Gaussian mixture (GM) clustering, are implemented to label features on a collection of XRF maps of human atherosclerotic plaque samples. The investigation involves the hard X-Ray nanoprobe (NanoMAX) at MAX IV synchrotron radiation facility, utilizing scanning transmission X-Ray microscopy (STXM) and XRF techniques. The analysis covers regions of interest scanned by the beam with a step size of 200 nm, yielding XRF maps of elements like calcium, iron, and zinc. These maps reveal intricate structures unsuitable for manual labeling. However, they can be accurately classified in an automated fashion using GM. Prior to clustering, PCA is used to deal with repeated patterns and background areas. The resulting clusters are associated with different types of features, which can be identified as specific tissues confirmed by histology. Regions of high concentrations of phosphorus, sulfur, calcium, and iron are found in the samples. These regions are also observed in the STXM results as spots of low transmission that typically are associated with calcium deposits only.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead Reconstructing Soft Robotic Touch via In-Finger Vision A Cable-Actuated Soft Manipulator for Dexterous Grasping Based on Deep Reinforcement Learning Liquid Metal Chameleon Tongues: Modulating Surface Tension and Phase Transition to Enable Bioinspired Soft Actuators Reprogrammable, Recyclable Origami Robots Controlled by Magnetic Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1