使用硬质合金刀具车削淬硬 AISI 4340 时的表面粗糙度预测绘图

Armansyah Ginting, Z. Masyithah
{"title":"使用硬质合金刀具车削淬硬 AISI 4340 时的表面粗糙度预测绘图","authors":"Armansyah Ginting, Z. Masyithah","doi":"10.21924/cst.9.1.2024.1417","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach to predict surface roughness in the hard turning of AISI 4340 steel using carbide tools, aimed to develop a comprehensive predictive map. The hypothesis that surface roughness can be accurately predicted using a linear regression model was tested and confirmed. Experimental results showed surface roughness in the range of 1.946 to 5.636 microns. Statistical analysis revealed a normal distribution of surface roughness data with linear regression as the best-fit model, significantly determined by feed rate and explaining 98.41% of the variance. Machine learning validated this model, achieving high prediction accuracy (R² = 96.91%, MSE = 0.058, RMSE = 0.242). The innovative predictive map, created using a full factorial design, demonstrated a strong agreement between predicted and validated values. This work highlights the potential of integrating statistical and machine learning techniques for precise surface roughness prediction, recommending industrial validation to enhance machining productivity.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive mapping of surface roughness in turning of hardened AISI 4340 using carbide tools\",\"authors\":\"Armansyah Ginting, Z. Masyithah\",\"doi\":\"10.21924/cst.9.1.2024.1417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel approach to predict surface roughness in the hard turning of AISI 4340 steel using carbide tools, aimed to develop a comprehensive predictive map. The hypothesis that surface roughness can be accurately predicted using a linear regression model was tested and confirmed. Experimental results showed surface roughness in the range of 1.946 to 5.636 microns. Statistical analysis revealed a normal distribution of surface roughness data with linear regression as the best-fit model, significantly determined by feed rate and explaining 98.41% of the variance. Machine learning validated this model, achieving high prediction accuracy (R² = 96.91%, MSE = 0.058, RMSE = 0.242). The innovative predictive map, created using a full factorial design, demonstrated a strong agreement between predicted and validated values. This work highlights the potential of integrating statistical and machine learning techniques for precise surface roughness prediction, recommending industrial validation to enhance machining productivity.\",\"PeriodicalId\":36437,\"journal\":{\"name\":\"Communications in Science and Technology\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21924/cst.9.1.2024.1417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.9.1.2024.1417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新方法来预测使用硬质合金刀具硬车削 AISI 4340 钢时的表面粗糙度,旨在开发一种综合预测图。使用线性回归模型可以准确预测表面粗糙度的假设得到了测试和证实。实验结果表明,表面粗糙度范围在 1.946 至 5.636 微米之间。统计分析表明,表面粗糙度数据呈正态分布,线性回归为最佳拟合模型,显著取决于进给率,可解释 98.41% 的方差。机器学习验证了这一模型,实现了较高的预测精度(R² = 96.91%,MSE = 0.058,RMSE = 0.242)。采用全因子设计创建的创新预测图显示,预测值与验证值之间具有很强的一致性。这项工作凸显了整合统计和机器学习技术进行精确表面粗糙度预测的潜力,建议进行工业验证以提高加工生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive mapping of surface roughness in turning of hardened AISI 4340 using carbide tools
This study presents a novel approach to predict surface roughness in the hard turning of AISI 4340 steel using carbide tools, aimed to develop a comprehensive predictive map. The hypothesis that surface roughness can be accurately predicted using a linear regression model was tested and confirmed. Experimental results showed surface roughness in the range of 1.946 to 5.636 microns. Statistical analysis revealed a normal distribution of surface roughness data with linear regression as the best-fit model, significantly determined by feed rate and explaining 98.41% of the variance. Machine learning validated this model, achieving high prediction accuracy (R² = 96.91%, MSE = 0.058, RMSE = 0.242). The innovative predictive map, created using a full factorial design, demonstrated a strong agreement between predicted and validated values. This work highlights the potential of integrating statistical and machine learning techniques for precise surface roughness prediction, recommending industrial validation to enhance machining productivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Science and Technology
Communications in Science and Technology Engineering-Engineering (all)
CiteScore
3.20
自引率
0.00%
发文量
13
审稿时长
24 weeks
期刊最新文献
Improving the activity of CO2 capturing from flue gas by membrane gas – solvent absorption process Efficient removal of amoxicillin, ciprofloxacin, and tetracycline from aqueous solution by Cu-Bi2O3 synthesized using precipitation-assisted-microwave Development of CaCO3 novel morphology through crystal lattice modification assisted by sulfate incorporation and vibration The impact of bacillus sp. NTLG2-20 and reduced nitrogen fertilization on soil properties and peanut yield Simulation and optimization of fatty acid extraction parameters from Nannochloropsis sp. using supercritical carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1