利用机器学习技术分析和预测心脏病发作

Shuaib Jasim, İbrahim Onaran, Mustafa Al-asadi
{"title":"利用机器学习技术分析和预测心脏病发作","authors":"Shuaib Jasim, İbrahim Onaran, Mustafa Al-asadi","doi":"10.34110/forecasting.1489839","DOIUrl":null,"url":null,"abstract":"This study explores the use of machine learning algorithms to analyze and predict heart attacks, focusing on genetics, lifestyle, medical history, and biometric factors. The data was analyzed using logistic regression, support vector machines, decision trees, and random forests. Support vector machines were found to be the most effective model for predicting heart attack risk, with a high accuracy rate and low error rate. The study highlights the potential of machine learning in assisting healthcare professionals and individuals in determining heart attack risk and taking preventive measures.","PeriodicalId":141932,"journal":{"name":"Turkish Journal of Forecasting","volume":"328 5‐6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heart Attack Analysis and Prediction with Machine Learning Techniques\",\"authors\":\"Shuaib Jasim, İbrahim Onaran, Mustafa Al-asadi\",\"doi\":\"10.34110/forecasting.1489839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the use of machine learning algorithms to analyze and predict heart attacks, focusing on genetics, lifestyle, medical history, and biometric factors. The data was analyzed using logistic regression, support vector machines, decision trees, and random forests. Support vector machines were found to be the most effective model for predicting heart attack risk, with a high accuracy rate and low error rate. The study highlights the potential of machine learning in assisting healthcare professionals and individuals in determining heart attack risk and taking preventive measures.\",\"PeriodicalId\":141932,\"journal\":{\"name\":\"Turkish Journal of Forecasting\",\"volume\":\"328 5‐6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Forecasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34110/forecasting.1489839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34110/forecasting.1489839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了如何利用机器学习算法来分析和预测心脏病发作,重点关注遗传学、生活方式、病史和生物统计学因素。使用逻辑回归、支持向量机、决策树和随机森林对数据进行了分析。结果发现,支持向量机是预测心脏病发作风险最有效的模型,准确率高,错误率低。这项研究强调了机器学习在协助医疗保健专业人员和个人确定心脏病发作风险并采取预防措施方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heart Attack Analysis and Prediction with Machine Learning Techniques
This study explores the use of machine learning algorithms to analyze and predict heart attacks, focusing on genetics, lifestyle, medical history, and biometric factors. The data was analyzed using logistic regression, support vector machines, decision trees, and random forests. Support vector machines were found to be the most effective model for predicting heart attack risk, with a high accuracy rate and low error rate. The study highlights the potential of machine learning in assisting healthcare professionals and individuals in determining heart attack risk and taking preventive measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heart Attack Analysis and Prediction with Machine Learning Techniques Forecasting of Giresun Hazelnut Quantity in Giresun Province Using Pi-Sigma Artificial Neural Networks Forecasting of Turkey's Hazelnut Export Amounts According to Seasons with Dendritic Neuron Model Artificial Neural Network Hybrid AI-based Voice Authentication Revised Passing-Bablok Regression Method for Model Comparison
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1