应用遗传算法和分析方法确定分布式能源系统的适当位置和容量

B. Saka, Jacob Tsado, V. Kiray, S. Hussein
{"title":"应用遗传算法和分析方法确定分布式能源系统的适当位置和容量","authors":"B. Saka, Jacob Tsado, V. Kiray, S. Hussein","doi":"10.46604/peti.2024.13587","DOIUrl":null,"url":null,"abstract":"In this study, the genetic algorithm (GA) and an analytical technique are used to properly connect the distributed energy system (DES) to the distribution network of the Federal Capital Territory (FCT). A power flow solution is used to obtain the losses and voltages assigned to the chromosomes as the fitness value for the GA to determine the best locations for the DES. Subsequently, the analytical method is used to calculate the capacities of the DES, corresponding to each location obtained using the GA. The effectiveness of the technique is examined on IEEE 33 and 69 buses, and the results demonstrate a loss reduction of 69.19%, the least voltage of 0.975 pu for the 33-node, and a 70.22% loss reduction with the least voltage of 0.985 pu for the 69-node. The suggested technique is applied to the FCT distribution network, and the results show a 70% voltage improvement and 14.05% loss reduction.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":"14 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Genetic Algorithm and Analytical Method to Determine the Appropriate Locations and Capacities for Distributed Energy System\",\"authors\":\"B. Saka, Jacob Tsado, V. Kiray, S. Hussein\",\"doi\":\"10.46604/peti.2024.13587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the genetic algorithm (GA) and an analytical technique are used to properly connect the distributed energy system (DES) to the distribution network of the Federal Capital Territory (FCT). A power flow solution is used to obtain the losses and voltages assigned to the chromosomes as the fitness value for the GA to determine the best locations for the DES. Subsequently, the analytical method is used to calculate the capacities of the DES, corresponding to each location obtained using the GA. The effectiveness of the technique is examined on IEEE 33 and 69 buses, and the results demonstrate a loss reduction of 69.19%, the least voltage of 0.975 pu for the 33-node, and a 70.22% loss reduction with the least voltage of 0.985 pu for the 69-node. The suggested technique is applied to the FCT distribution network, and the results show a 70% voltage improvement and 14.05% loss reduction.\",\"PeriodicalId\":33402,\"journal\":{\"name\":\"Proceedings of Engineering and Technology Innovation\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/peti.2024.13587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2024.13587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用遗传算法(GA)和分析技术,将分布式能源系统(DES)与联邦首都区(FCT)的配电网络进行适当连接。利用功率流解决方案获得分配给染色体的损耗和电压,作为遗传算法的适应值,以确定 DES 的最佳位置。随后,使用分析方法计算出与利用 GA 获得的每个位置相对应的 DES 容量。在 IEEE 33 和 69 总线上检验了该技术的有效性,结果表明 33 节点的损耗降低了 69.19%,最低电压为 0.975 pu;69 节点的损耗降低了 70.22%,最低电压为 0.985 pu。建议的技术被应用于 FCT 配电网络,结果显示电压提高了 70%,损耗降低了 14.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Genetic Algorithm and Analytical Method to Determine the Appropriate Locations and Capacities for Distributed Energy System
In this study, the genetic algorithm (GA) and an analytical technique are used to properly connect the distributed energy system (DES) to the distribution network of the Federal Capital Territory (FCT). A power flow solution is used to obtain the losses and voltages assigned to the chromosomes as the fitness value for the GA to determine the best locations for the DES. Subsequently, the analytical method is used to calculate the capacities of the DES, corresponding to each location obtained using the GA. The effectiveness of the technique is examined on IEEE 33 and 69 buses, and the results demonstrate a loss reduction of 69.19%, the least voltage of 0.975 pu for the 33-node, and a 70.22% loss reduction with the least voltage of 0.985 pu for the 69-node. The suggested technique is applied to the FCT distribution network, and the results show a 70% voltage improvement and 14.05% loss reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
12
审稿时长
18 weeks
期刊最新文献
Quantitative Shaking Evaluation of Bracing-Strengthened and Base-Isolated Buildings Using Seismic Intensity Level Prediction of Crop Leaf Health by MCCM and Histogram Learning Model Using Leaf Region A Self-Repairing Natural Rubber as a Novel Material Pad to Develop an Electro-Surgical Training Prototype Application of Genetic Algorithm and Analytical Method to Determine the Appropriate Locations and Capacities for Distributed Energy System A Fake Profile Detection Model Using Multistage Stacked Ensemble Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1