揭示受冠心病影响和服用丹络片的人体内失调的复杂生理过程

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2024-07-17 DOI:10.1016/j.compbiolchem.2024.108151
{"title":"揭示受冠心病影响和服用丹络片的人体内失调的复杂生理过程","authors":"","doi":"10.1016/j.compbiolchem.2024.108151","DOIUrl":null,"url":null,"abstract":"<div><p>Coronary heart disease (CHD), a multifactorial cardiovascular condition, arises from the accumulation of atherosclerotic plaque in the coronary arteries, resulting in compromised blood flow to the heart and complications such as angina, myocardial infarction, or heart failure. Addressing global prevalence, risk factors, and genetics is crucial for effective management. The current study aims to identify molecular biomarkers for CHD by scrutinizing the expression patterns of differentially expressed genes (DEGs), utilizing various bioinformatic tools. In this investigation, a total of 24 samples underwent examination using the GEO2R tool. These included eight samples from individuals before treatment (GSM5434123–30), eight samples from patients after Dan-Lou tablet treatment (GSM5434131–38), and eight samples from healthy control subjects (GSM5434139–46). A suite of bioinformatics tools was used to detect enriched genes within the network, namely, Cytoscape (v3.10.1) and Molecular Complex Detection (MCODE). Functional analysis of the DEGs was conducted via clusterProfiler, a R-based package, and ClueGO. 182 and 174 DEGs corresponding to untreated and treated patient sample groups were functionally annotated for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. <em>ARF6</em> gene dysregulation was implicated in the myeloid cell apoptotic process (GO:0033028), regulation of actin cytoskeleton (hsa:04810), and other vital cellular functions. The myeloid cell apoptotic process (GO:0033028) was also observed to be regulated by the differential expression of the <em>STAT5B</em> gene. Additionally, <em>STAT5B</em> was found to be associated with the regulation of erythrocyte differentiation (GO:0045646). Providing targeted therapy based on the patient's idiosyncratic gene expression profiles could lead to the curing of various disorders in the near future.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the intricate physiological processes dysregulated in CHD-affected and Dan-Lou tablet-treated individuals\",\"authors\":\"\",\"doi\":\"10.1016/j.compbiolchem.2024.108151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coronary heart disease (CHD), a multifactorial cardiovascular condition, arises from the accumulation of atherosclerotic plaque in the coronary arteries, resulting in compromised blood flow to the heart and complications such as angina, myocardial infarction, or heart failure. Addressing global prevalence, risk factors, and genetics is crucial for effective management. The current study aims to identify molecular biomarkers for CHD by scrutinizing the expression patterns of differentially expressed genes (DEGs), utilizing various bioinformatic tools. In this investigation, a total of 24 samples underwent examination using the GEO2R tool. These included eight samples from individuals before treatment (GSM5434123–30), eight samples from patients after Dan-Lou tablet treatment (GSM5434131–38), and eight samples from healthy control subjects (GSM5434139–46). A suite of bioinformatics tools was used to detect enriched genes within the network, namely, Cytoscape (v3.10.1) and Molecular Complex Detection (MCODE). Functional analysis of the DEGs was conducted via clusterProfiler, a R-based package, and ClueGO. 182 and 174 DEGs corresponding to untreated and treated patient sample groups were functionally annotated for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. <em>ARF6</em> gene dysregulation was implicated in the myeloid cell apoptotic process (GO:0033028), regulation of actin cytoskeleton (hsa:04810), and other vital cellular functions. The myeloid cell apoptotic process (GO:0033028) was also observed to be regulated by the differential expression of the <em>STAT5B</em> gene. Additionally, <em>STAT5B</em> was found to be associated with the regulation of erythrocyte differentiation (GO:0045646). Providing targeted therapy based on the patient's idiosyncratic gene expression profiles could lead to the curing of various disorders in the near future.</p></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124001397\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001397","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

冠心病(CHD)是一种多因素心血管疾病,由冠状动脉中的动脉粥样硬化斑块堆积引起,导致心脏血流受阻,引发心绞痛、心肌梗死或心力衰竭等并发症。解决全球发病率、风险因素和遗传学问题对于有效管理至关重要。目前的研究旨在利用各种生物信息学工具,通过仔细研究差异表达基因(DEGs)的表达模式,找出冠心病的分子生物标志物。在这项研究中,共使用 GEO2R 工具检查了 24 份样本。其中包括 8 份治疗前的个人样本(GSM5434123-30)、8 份丹参片治疗后的患者样本(GSM5434131-38)和 8 份健康对照组样本(GSM5434139-46)。研究人员使用了一套生物信息学工具来检测网络中的富集基因,即 Cytoscape (v3.10.1) 和 Molecular Complex Detection (MCODE)。通过基于 R 的软件包 clusterProfiler 和 ClueGO 对 DEGs 进行了功能分析。根据基因本体论(GO)和京都基因组百科全书(KEGG)术语,分别对未治疗和治疗患者样本组的182个和174个DEGs进行了功能注释。ARF6基因失调与髓系细胞凋亡过程(GO:0033028)、肌动蛋白细胞骨架调控(hsa:04810)和其他重要细胞功能有关。还观察到髓系细胞凋亡过程(GO:0033028)受 STAT5B 基因差异表达的调控。此外,研究还发现 STAT5B 与红细胞分化(GO:0045646)的调控有关。在不久的将来,根据患者的特异性基因表达谱提供靶向治疗可能会治愈各种疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling the intricate physiological processes dysregulated in CHD-affected and Dan-Lou tablet-treated individuals

Coronary heart disease (CHD), a multifactorial cardiovascular condition, arises from the accumulation of atherosclerotic plaque in the coronary arteries, resulting in compromised blood flow to the heart and complications such as angina, myocardial infarction, or heart failure. Addressing global prevalence, risk factors, and genetics is crucial for effective management. The current study aims to identify molecular biomarkers for CHD by scrutinizing the expression patterns of differentially expressed genes (DEGs), utilizing various bioinformatic tools. In this investigation, a total of 24 samples underwent examination using the GEO2R tool. These included eight samples from individuals before treatment (GSM5434123–30), eight samples from patients after Dan-Lou tablet treatment (GSM5434131–38), and eight samples from healthy control subjects (GSM5434139–46). A suite of bioinformatics tools was used to detect enriched genes within the network, namely, Cytoscape (v3.10.1) and Molecular Complex Detection (MCODE). Functional analysis of the DEGs was conducted via clusterProfiler, a R-based package, and ClueGO. 182 and 174 DEGs corresponding to untreated and treated patient sample groups were functionally annotated for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. ARF6 gene dysregulation was implicated in the myeloid cell apoptotic process (GO:0033028), regulation of actin cytoskeleton (hsa:04810), and other vital cellular functions. The myeloid cell apoptotic process (GO:0033028) was also observed to be regulated by the differential expression of the STAT5B gene. Additionally, STAT5B was found to be associated with the regulation of erythrocyte differentiation (GO:0045646). Providing targeted therapy based on the patient's idiosyncratic gene expression profiles could lead to the curing of various disorders in the near future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
ILYCROsite: Identification of lysine crotonylation sites based on FCM-GRNN undersampling technique A comprehensive bioinformatic analysis of the role of TGF-β1-stimulated activating transcription factor 3 by non-coding RNAs during breast cancer progression Unveiling therapeutic biomarkers and druggable targets in ALS: An integrative microarray analysis, molecular docking, and structural dynamic studies Accurately identifying positive and negative regulation of apoptosis using fusion features and machine learning methods Molecular descriptors and in silico studies of 4-((5-(decylthio)-4-methyl-4n-1,2,4-triazol-3-yl)methyl)morpholine as a potential drug for the treatment of fungal pathologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1