{"title":"多尺度建模用于预测性了解癌细胞代谢的重要综述","authors":"Marco Vanoni , Pasquale Palumbo , Stefano Busti , Lilia Alberghina","doi":"10.1016/j.coisb.2024.100531","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolism, whose reprogramming is an established cancer hallmark, promotes growth and proliferation in cancer cells. Genome-wide metabolic models are becoming increasingly capable of describing cancer growth. Multiscale models may allow the capture of other relevant features of cancer cells and their relationship with the tumor microenvironment. The merging of multiscale metabolic modeling and artificial intelligence can lead to a paradigm shift in oncology, possibly leading to patient-specific personalized digital twins.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"39 ","pages":"Article 100531"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A critical review of multiscale modeling for predictive understanding of cancer cell metabolism\",\"authors\":\"Marco Vanoni , Pasquale Palumbo , Stefano Busti , Lilia Alberghina\",\"doi\":\"10.1016/j.coisb.2024.100531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metabolism, whose reprogramming is an established cancer hallmark, promotes growth and proliferation in cancer cells. Genome-wide metabolic models are becoming increasingly capable of describing cancer growth. Multiscale models may allow the capture of other relevant features of cancer cells and their relationship with the tumor microenvironment. The merging of multiscale metabolic modeling and artificial intelligence can lead to a paradigm shift in oncology, possibly leading to patient-specific personalized digital twins.</p></div>\",\"PeriodicalId\":37400,\"journal\":{\"name\":\"Current Opinion in Systems Biology\",\"volume\":\"39 \",\"pages\":\"Article 100531\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452310024000271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310024000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A critical review of multiscale modeling for predictive understanding of cancer cell metabolism
Metabolism, whose reprogramming is an established cancer hallmark, promotes growth and proliferation in cancer cells. Genome-wide metabolic models are becoming increasingly capable of describing cancer growth. Multiscale models may allow the capture of other relevant features of cancer cells and their relationship with the tumor microenvironment. The merging of multiscale metabolic modeling and artificial intelligence can lead to a paradigm shift in oncology, possibly leading to patient-specific personalized digital twins.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution