{"title":"偏好激发方法对对话式推荐系统用户体验的影响","authors":"Liv Ziegfeld , Daan Di Scala , Anita H.M. Cremers","doi":"10.1016/j.csl.2024.101696","DOIUrl":null,"url":null,"abstract":"<div><p>The prevalence of conversational interfaces is rapidly rising, since improved algorithms allow for remarkable proficiency in understanding and generating natural language. This also holds for Conversational Recommender Systems (CRS), that benefit from information being provided by the user in the course of the dialogue to offer personalized recommendations. However, the challenge remains eliciting the user's characteristics and preferences in a way that leads to the most optimal user experience. Hence, the current research was aimed at investigating the effect of different Preference Elicitation (PE) methods on the user experience of a CRS. We introduce two axes across which PE methods can be classified, namely the degree of system prompt guidance and the level of user input restriction. We built three versions of a CRS to conduct a between-subjects experiment which compared three conditions: high guidance-high restriction, high guidance-low restriction and low guidance-low restriction. We tested their effect on ten constructs of user experience measures on 66 European participants, all working in agriculture or forestry.</p><p>The study did not find any significant effects of the three preference elicitation methods on all user experience constructs collected through questionnaires. However, we did find significant differences in terms of the objective measures chat duration (Speed), response time (Cognitive Demand) and recommendation performance (Accuracy of Recommended Items). Regarding the recommendation performance, it was found that the preference elicitation methods with high guidance led to a higher match score than the condition with low guidance. The certainty score was highest in the condition with high guidance and high input restriction. Finally, we found through a question at the end of the conversation that users who were satisfied with the recommendation responded more positively to six out of ten user experience constructs. This suggests that satisfaction with the recommendation performance is a crucial factor in the user experience of CRSs.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101696"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000792/pdfft?md5=2468411a22f6c0a2ba9f84281b96dacc&pid=1-s2.0-S0885230824000792-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The effect of preference elicitation methods on the user experience in conversational recommender systems\",\"authors\":\"Liv Ziegfeld , Daan Di Scala , Anita H.M. Cremers\",\"doi\":\"10.1016/j.csl.2024.101696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prevalence of conversational interfaces is rapidly rising, since improved algorithms allow for remarkable proficiency in understanding and generating natural language. This also holds for Conversational Recommender Systems (CRS), that benefit from information being provided by the user in the course of the dialogue to offer personalized recommendations. However, the challenge remains eliciting the user's characteristics and preferences in a way that leads to the most optimal user experience. Hence, the current research was aimed at investigating the effect of different Preference Elicitation (PE) methods on the user experience of a CRS. We introduce two axes across which PE methods can be classified, namely the degree of system prompt guidance and the level of user input restriction. We built three versions of a CRS to conduct a between-subjects experiment which compared three conditions: high guidance-high restriction, high guidance-low restriction and low guidance-low restriction. We tested their effect on ten constructs of user experience measures on 66 European participants, all working in agriculture or forestry.</p><p>The study did not find any significant effects of the three preference elicitation methods on all user experience constructs collected through questionnaires. However, we did find significant differences in terms of the objective measures chat duration (Speed), response time (Cognitive Demand) and recommendation performance (Accuracy of Recommended Items). Regarding the recommendation performance, it was found that the preference elicitation methods with high guidance led to a higher match score than the condition with low guidance. The certainty score was highest in the condition with high guidance and high input restriction. Finally, we found through a question at the end of the conversation that users who were satisfied with the recommendation responded more positively to six out of ten user experience constructs. This suggests that satisfaction with the recommendation performance is a crucial factor in the user experience of CRSs.</p></div>\",\"PeriodicalId\":50638,\"journal\":{\"name\":\"Computer Speech and Language\",\"volume\":\"89 \",\"pages\":\"Article 101696\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000792/pdfft?md5=2468411a22f6c0a2ba9f84281b96dacc&pid=1-s2.0-S0885230824000792-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Speech and Language\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000792\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000792","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
会话界面的普及率正在迅速上升,因为经过改进的算法可以非常熟练地理解和生成自然语言。对话推荐系统(CRS)也是如此,该系统利用用户在对话过程中提供的信息来提供个性化推荐。然而,如何获取用户的特征和偏好,从而带来最佳的用户体验,仍然是一项挑战。因此,目前的研究旨在调查不同的偏好激发(PE)方法对 CRS 用户体验的影响。我们引入了两个轴来对 PE 方法进行分类,即系统提示引导的程度和用户输入限制的程度。我们制作了三个版本的 CRS,进行了主体间实验,比较了三种情况:高引导-高限制、高引导-低限制和低引导-低限制。我们在 66 名欧洲参与者(均从事农业或林业工作)身上测试了这三种方法对十项用户体验指标的影响。研究没有发现三种偏好激发方法对通过问卷收集的所有用户体验指标有任何显著影响。不过,我们确实发现在客观测量聊天持续时间(速度)、响应时间(认知需求)和推荐性能(推荐项目的准确性)方面存在明显差异。在推荐性能方面,我们发现高引导性的偏好激发方法比低引导性的条件下匹配得分更高。高指导性和高输入限制条件下的确定性得分最高。最后,我们通过对话结束时的一个问题发现,对推荐感到满意的用户对十个用户体验构面中的六个作出了更积极的回应。这表明,对推荐性能的满意度是 CRS 用户体验的一个关键因素。
The effect of preference elicitation methods on the user experience in conversational recommender systems
The prevalence of conversational interfaces is rapidly rising, since improved algorithms allow for remarkable proficiency in understanding and generating natural language. This also holds for Conversational Recommender Systems (CRS), that benefit from information being provided by the user in the course of the dialogue to offer personalized recommendations. However, the challenge remains eliciting the user's characteristics and preferences in a way that leads to the most optimal user experience. Hence, the current research was aimed at investigating the effect of different Preference Elicitation (PE) methods on the user experience of a CRS. We introduce two axes across which PE methods can be classified, namely the degree of system prompt guidance and the level of user input restriction. We built three versions of a CRS to conduct a between-subjects experiment which compared three conditions: high guidance-high restriction, high guidance-low restriction and low guidance-low restriction. We tested their effect on ten constructs of user experience measures on 66 European participants, all working in agriculture or forestry.
The study did not find any significant effects of the three preference elicitation methods on all user experience constructs collected through questionnaires. However, we did find significant differences in terms of the objective measures chat duration (Speed), response time (Cognitive Demand) and recommendation performance (Accuracy of Recommended Items). Regarding the recommendation performance, it was found that the preference elicitation methods with high guidance led to a higher match score than the condition with low guidance. The certainty score was highest in the condition with high guidance and high input restriction. Finally, we found through a question at the end of the conversation that users who were satisfied with the recommendation responded more positively to six out of ten user experience constructs. This suggests that satisfaction with the recommendation performance is a crucial factor in the user experience of CRSs.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.