{"title":"具有非线性阻尼的 (2+1)D 立方五次方非线性薛定谔方程的有限差分方案","authors":"Anh Ha Le , Toan T. Huynh , Quan M. Nguyen","doi":"10.1016/j.apnum.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Solitons of the purely cubic nonlinear Schrödinger equation in a space dimension of <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> suffer critical and supercritical collapses. These solitons can be stabilized in a cubic-quintic nonlinear medium. In this paper, we analyze the Crank-Nicolson finite difference scheme for the (2+1)D cubic-quintic nonlinear Schrödinger equation with cubic damping. We show that both the discrete solution, in the discrete <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm, and discrete energy are bounded. By using appropriate settings and estimations, the existence and the uniqueness of the numerical solution are proved. In addition, the error estimations are established in terms of second order for both space and time in discrete <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm. Numerical simulations for the (2+1)D cubic-quintic nonlinear Schrödinger equation with cubic damping are conducted to validate the convergence.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 215-239"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001867/pdfft?md5=29380bcb28827a3fc015cb9476b8a842&pid=1-s2.0-S0168927424001867-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A finite difference scheme for (2+1)D cubic-quintic nonlinear Schrödinger equations with nonlinear damping\",\"authors\":\"Anh Ha Le , Toan T. Huynh , Quan M. Nguyen\",\"doi\":\"10.1016/j.apnum.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solitons of the purely cubic nonlinear Schrödinger equation in a space dimension of <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span> suffer critical and supercritical collapses. These solitons can be stabilized in a cubic-quintic nonlinear medium. In this paper, we analyze the Crank-Nicolson finite difference scheme for the (2+1)D cubic-quintic nonlinear Schrödinger equation with cubic damping. We show that both the discrete solution, in the discrete <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm, and discrete energy are bounded. By using appropriate settings and estimations, the existence and the uniqueness of the numerical solution are proved. In addition, the error estimations are established in terms of second order for both space and time in discrete <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm. Numerical simulations for the (2+1)D cubic-quintic nonlinear Schrödinger equation with cubic damping are conducted to validate the convergence.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"205 \",\"pages\":\"Pages 215-239\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001867/pdfft?md5=29380bcb28827a3fc015cb9476b8a842&pid=1-s2.0-S0168927424001867-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001867\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001867","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A finite difference scheme for (2+1)D cubic-quintic nonlinear Schrödinger equations with nonlinear damping
Solitons of the purely cubic nonlinear Schrödinger equation in a space dimension of suffer critical and supercritical collapses. These solitons can be stabilized in a cubic-quintic nonlinear medium. In this paper, we analyze the Crank-Nicolson finite difference scheme for the (2+1)D cubic-quintic nonlinear Schrödinger equation with cubic damping. We show that both the discrete solution, in the discrete -norm, and discrete energy are bounded. By using appropriate settings and estimations, the existence and the uniqueness of the numerical solution are proved. In addition, the error estimations are established in terms of second order for both space and time in discrete -norm and -norm. Numerical simulations for the (2+1)D cubic-quintic nonlinear Schrödinger equation with cubic damping are conducted to validate the convergence.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.