Ti3C2-TiO2 原子薄膜的断裂

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Extreme Mechanics Letters Pub Date : 2024-07-26 DOI:10.1016/j.eml.2024.102211
Jianyu Dai, Congjie Wei, Chenglin Wu
{"title":"Ti3C2-TiO2 原子薄膜的断裂","authors":"Jianyu Dai,&nbsp;Congjie Wei,&nbsp;Chenglin Wu","doi":"10.1016/j.eml.2024.102211","DOIUrl":null,"url":null,"abstract":"<div><p>MXene exhibits outstanding electrical conductivity, but its susceptibility to oxidation can impede its conductivity potential. While there is extensive research on the electrical, mechanical properties, and fracture behavior of pure MXene, the exploration of the oxidized MXene is rare, especially for the commonly observed Ti<sub>3</sub>C<sub>2</sub>-TiO<sub>2</sub> mixtures. In this study, we conducted molecular dynamics (MD) and Density Functional Theory (DFT) approaches and, for the first time, discovered three stable crystal structures of pure MXene with attached TiO<sub>2</sub> layers: Loose, Comb, and Tight. For each of these structures, we investigated the anisotropic mechanical and fracture behaviors based on two loading scenarios: ribbon and pre-cracked single layers. The results indicate that the anisotropic behavior is predominantly manifested in Loose and Tight structures. The structural asymmetry of Comb results in a larger and evolving cohesive zone. The direction of the TiO<sub>2</sub> layer-MXene interface bonds influences the material's strength, with the Tight structure exhibiting the highest resistance to fracture.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"71 ","pages":"Article 102211"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture of Ti3C2-TiO2 atomically thin films\",\"authors\":\"Jianyu Dai,&nbsp;Congjie Wei,&nbsp;Chenglin Wu\",\"doi\":\"10.1016/j.eml.2024.102211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MXene exhibits outstanding electrical conductivity, but its susceptibility to oxidation can impede its conductivity potential. While there is extensive research on the electrical, mechanical properties, and fracture behavior of pure MXene, the exploration of the oxidized MXene is rare, especially for the commonly observed Ti<sub>3</sub>C<sub>2</sub>-TiO<sub>2</sub> mixtures. In this study, we conducted molecular dynamics (MD) and Density Functional Theory (DFT) approaches and, for the first time, discovered three stable crystal structures of pure MXene with attached TiO<sub>2</sub> layers: Loose, Comb, and Tight. For each of these structures, we investigated the anisotropic mechanical and fracture behaviors based on two loading scenarios: ribbon and pre-cracked single layers. The results indicate that the anisotropic behavior is predominantly manifested in Loose and Tight structures. The structural asymmetry of Comb results in a larger and evolving cohesive zone. The direction of the TiO<sub>2</sub> layer-MXene interface bonds influences the material's strength, with the Tight structure exhibiting the highest resistance to fracture.</p></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"71 \",\"pages\":\"Article 102211\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431624000919\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624000919","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

MXene 具有出色的导电性,但其易氧化性会阻碍其导电潜力。虽然对纯 MXene 的电气、机械性能和断裂行为进行了广泛的研究,但对氧化 MXene 的研究却很少,尤其是对常见的 Ti3C2-TiO2 混合物的研究。在这项研究中,我们采用分子动力学(MD)和密度泛函理论(DFT)方法,首次发现了附着有 TiO2 层的纯 MXene 的三种稳定晶体结构:松散型、梳状型和紧密型。针对每种结构,我们研究了基于两种加载情况的各向异性机械和断裂行为:带状和预裂纹单层。结果表明,各向异性行为主要体现在松散和紧密结构中。Comb 结构的不对称性导致了更大且不断发展的内聚区。二氧化钛层-二甲苯界面键的方向影响材料的强度,Tight 结构表现出最高的抗断裂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fracture of Ti3C2-TiO2 atomically thin films

MXene exhibits outstanding electrical conductivity, but its susceptibility to oxidation can impede its conductivity potential. While there is extensive research on the electrical, mechanical properties, and fracture behavior of pure MXene, the exploration of the oxidized MXene is rare, especially for the commonly observed Ti3C2-TiO2 mixtures. In this study, we conducted molecular dynamics (MD) and Density Functional Theory (DFT) approaches and, for the first time, discovered three stable crystal structures of pure MXene with attached TiO2 layers: Loose, Comb, and Tight. For each of these structures, we investigated the anisotropic mechanical and fracture behaviors based on two loading scenarios: ribbon and pre-cracked single layers. The results indicate that the anisotropic behavior is predominantly manifested in Loose and Tight structures. The structural asymmetry of Comb results in a larger and evolving cohesive zone. The direction of the TiO2 layer-MXene interface bonds influences the material's strength, with the Tight structure exhibiting the highest resistance to fracture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
期刊最新文献
Full range fragmentation simulation of nanoflake filler-matrix composite coatings on a polymer substrate A kinematics-based single-actuator setup for constant-curvature bending tests in extremely large deformations Aperture size control in kirigami metamaterials: Towards enhanced performance and applications Origami electronic membranes as highly shape-morphable mechanical and environmental sensing systems Effect of rate on the response and localized transformation patterns in NiTi Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1