用于寨卡病毒传播模型的新型径向基神经网络

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2024-07-25 DOI:10.1016/j.compbiolchem.2024.108162
{"title":"用于寨卡病毒传播模型的新型径向基神经网络","authors":"","doi":"10.1016/j.compbiolchem.2024.108162","DOIUrl":null,"url":null,"abstract":"<div><p>The motive of current investigations is to design a novel radial basis neural network stochastic structure to present the numerical representations of the Zika virus spreading model (ZVSM). The mathematical ZVSM is categorized into humans and vectors based on the susceptible <em>S</em>(<em>q</em>), exposed <em>E</em>(<em>q</em>), infected <em>I</em>(<em>q</em>) and recovered <em>R</em>(<em>q</em>), i.e., SEIR. The stochastic performances are designed using the radial basis activation function, feed forward neural network, twenty-two numbers of neurons along with the optimization of Bayesian regularization in order to solve the ZVSM. A dataset is achieved using the explicit Runge-Kutta scheme, which is used to reduce the mean square error (MSE) based on the process of training for solving the nonlinear ZVSM. The division of the data is categorized into training, which is taken as 78 %, while 11 % for both authentication and testing. Three different cases of the nonlinear ZVSM have been taken, while the scheme’s correctness is performed through the matching of the results. Furthermore, the reliability of the scheme is observed by applying different performances of regression, MSE, error histograms and state transition.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel radial basis neural network for the Zika virus spreading model\",\"authors\":\"\",\"doi\":\"10.1016/j.compbiolchem.2024.108162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The motive of current investigations is to design a novel radial basis neural network stochastic structure to present the numerical representations of the Zika virus spreading model (ZVSM). The mathematical ZVSM is categorized into humans and vectors based on the susceptible <em>S</em>(<em>q</em>), exposed <em>E</em>(<em>q</em>), infected <em>I</em>(<em>q</em>) and recovered <em>R</em>(<em>q</em>), i.e., SEIR. The stochastic performances are designed using the radial basis activation function, feed forward neural network, twenty-two numbers of neurons along with the optimization of Bayesian regularization in order to solve the ZVSM. A dataset is achieved using the explicit Runge-Kutta scheme, which is used to reduce the mean square error (MSE) based on the process of training for solving the nonlinear ZVSM. The division of the data is categorized into training, which is taken as 78 %, while 11 % for both authentication and testing. Three different cases of the nonlinear ZVSM have been taken, while the scheme’s correctness is performed through the matching of the results. Furthermore, the reliability of the scheme is observed by applying different performances of regression, MSE, error histograms and state transition.</p></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124001506\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001506","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当前研究的动机是设计一种新型径向基神经网络随机结构,以呈现寨卡病毒传播模型(ZVSM)的数值表示。数学上的寨卡病毒传播模型根据易感者 S(q)、暴露者 E(q)、感染者 I(q)和康复者 R(q),即 SEIR,分为人类和载体。为了求解 ZVSM,使用径向基激活函数、前馈神经网络、22 个神经元以及贝叶斯正则化优化来设计随机性能。使用显式 Runge-Kutta 方案实现数据集,该方案用于减少基于非线性 ZVSM 解法训练过程的均方误差(MSE)。数据分为训练数据和验证数据,训练数据占 78%,验证数据占 11%。非线性 ZVSM 有三种不同的情况,而方案的正确性是通过结果的匹配来实现的。此外,通过应用回归、MSE、误差直方图和状态转换的不同性能来观察该方案的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel radial basis neural network for the Zika virus spreading model

The motive of current investigations is to design a novel radial basis neural network stochastic structure to present the numerical representations of the Zika virus spreading model (ZVSM). The mathematical ZVSM is categorized into humans and vectors based on the susceptible S(q), exposed E(q), infected I(q) and recovered R(q), i.e., SEIR. The stochastic performances are designed using the radial basis activation function, feed forward neural network, twenty-two numbers of neurons along with the optimization of Bayesian regularization in order to solve the ZVSM. A dataset is achieved using the explicit Runge-Kutta scheme, which is used to reduce the mean square error (MSE) based on the process of training for solving the nonlinear ZVSM. The division of the data is categorized into training, which is taken as 78 %, while 11 % for both authentication and testing. Three different cases of the nonlinear ZVSM have been taken, while the scheme’s correctness is performed through the matching of the results. Furthermore, the reliability of the scheme is observed by applying different performances of regression, MSE, error histograms and state transition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
ILYCROsite: Identification of lysine crotonylation sites based on FCM-GRNN undersampling technique A comprehensive bioinformatic analysis of the role of TGF-β1-stimulated activating transcription factor 3 by non-coding RNAs during breast cancer progression Unveiling therapeutic biomarkers and druggable targets in ALS: An integrative microarray analysis, molecular docking, and structural dynamic studies Accurately identifying positive and negative regulation of apoptosis using fusion features and machine learning methods Molecular descriptors and in silico studies of 4-((5-(decylthio)-4-methyl-4n-1,2,4-triazol-3-yl)methyl)morpholine as a potential drug for the treatment of fungal pathologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1