利用双增强卷积集合神经网络检测乳腺癌 WSI 斑块中是否存在转移灶

Ruigang Ge , Guoyue Chen , Kazuki Saruta , Yuki Terata
{"title":"利用双增强卷积集合神经网络检测乳腺癌 WSI 斑块中是否存在转移灶","authors":"Ruigang Ge ,&nbsp;Guoyue Chen ,&nbsp;Kazuki Saruta ,&nbsp;Yuki Terata","doi":"10.1016/j.mlwa.2024.100579","DOIUrl":null,"url":null,"abstract":"<div><p>Breast cancer (BC) is a prevalent malignancy worldwide, posing a significant public health burden due to its high incidence rate. Accurate detection is crucial for improving survival rates, and pathological diagnosis through biopsy is essential for detailed BC detection. Convolutional Neural Network (CNN)-based methods have been proposed to support this detection, utilizing patches from Whole Slide Imaging (WSI) combined with sophisticated CNNs. In this research, we introduced DECENN, a novel deep learning architecture designed to overcome the limitations of single CNN models under fixed pre-trained parameter transfer learning settings. DECENN employs an ensemble of VGG16 and DenseNet121, integrated with innovative modules such as Multi-Scale Feature Extraction, Heterogeneous Convolution Enhancement, Feature Harmonization and Fusion, and Feature Integration Output. Through progressive stages – from baseline models, intermediate DCNN and DCNN+ models, to the fully integrated DECENN model – significant performance improvements were observed in experiments using 5-fold cross-validation on the Patch Camelyon(PCam) dataset. DECENN achieved an AUC of 99.70% ± 0.12%, an F-score of 98.93% ± 0.06%, and an Accuracy of 98.92% ± 0.06%, (<span><math><mrow><mi>p</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>001</mn></mrow></math></span>). These results highlight DECENN’s potential to significantly enhance the automated detection and diagnostic accuracy of BC metastasis in biopsy specimens.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"17 ","pages":"Article 100579"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000550/pdfft?md5=5deed5e31245e0c9768d99b90207c738&pid=1-s2.0-S2666827024000550-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Detection of presence or absence of metastasis in WSI patches of breast cancer using the dual-enhanced convolutional ensemble neural network\",\"authors\":\"Ruigang Ge ,&nbsp;Guoyue Chen ,&nbsp;Kazuki Saruta ,&nbsp;Yuki Terata\",\"doi\":\"10.1016/j.mlwa.2024.100579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Breast cancer (BC) is a prevalent malignancy worldwide, posing a significant public health burden due to its high incidence rate. Accurate detection is crucial for improving survival rates, and pathological diagnosis through biopsy is essential for detailed BC detection. Convolutional Neural Network (CNN)-based methods have been proposed to support this detection, utilizing patches from Whole Slide Imaging (WSI) combined with sophisticated CNNs. In this research, we introduced DECENN, a novel deep learning architecture designed to overcome the limitations of single CNN models under fixed pre-trained parameter transfer learning settings. DECENN employs an ensemble of VGG16 and DenseNet121, integrated with innovative modules such as Multi-Scale Feature Extraction, Heterogeneous Convolution Enhancement, Feature Harmonization and Fusion, and Feature Integration Output. Through progressive stages – from baseline models, intermediate DCNN and DCNN+ models, to the fully integrated DECENN model – significant performance improvements were observed in experiments using 5-fold cross-validation on the Patch Camelyon(PCam) dataset. DECENN achieved an AUC of 99.70% ± 0.12%, an F-score of 98.93% ± 0.06%, and an Accuracy of 98.92% ± 0.06%, (<span><math><mrow><mi>p</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>001</mn></mrow></math></span>). These results highlight DECENN’s potential to significantly enhance the automated detection and diagnostic accuracy of BC metastasis in biopsy specimens.</p></div>\",\"PeriodicalId\":74093,\"journal\":{\"name\":\"Machine learning with applications\",\"volume\":\"17 \",\"pages\":\"Article 100579\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000550/pdfft?md5=5deed5e31245e0c9768d99b90207c738&pid=1-s2.0-S2666827024000550-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning with applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666827024000550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌(BC)是一种全球流行的恶性肿瘤,由于发病率高,给公共卫生带来了巨大负担。准确的检测对于提高生存率至关重要,而通过活检进行病理诊断对于乳腺癌的详细检测至关重要。有人提出了基于卷积神经网络(CNN)的方法,利用全切片成像(WSI)的斑块与复杂的 CNN 相结合来支持这种检测。在这项研究中,我们引入了 DECENN,这是一种新型深度学习架构,旨在克服单一 CNN 模型在固定预训练参数迁移学习设置下的局限性。DECENN 采用了 VGG16 和 DenseNet121 的集合,并集成了多尺度特征提取、异构卷积增强、特征协调与融合以及特征集成输出等创新模块。通过从基线模型、中间 DCNN 和 DCNN+ 模型到完全集成的 DECENN 模型等渐进阶段,在 Patch Camelyon(PCam) 数据集上使用 5 倍交叉验证进行的实验中观察到了显著的性能改进。DECENN 的 AUC 为 99.70% ± 0.12%,F-score 为 98.93% ± 0.06%,准确率为 98.92% ± 0.06%,(p<0.001)。这些结果凸显了 DECENN 在显著提高活检样本中 BC 转移的自动检测和诊断准确性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of presence or absence of metastasis in WSI patches of breast cancer using the dual-enhanced convolutional ensemble neural network

Breast cancer (BC) is a prevalent malignancy worldwide, posing a significant public health burden due to its high incidence rate. Accurate detection is crucial for improving survival rates, and pathological diagnosis through biopsy is essential for detailed BC detection. Convolutional Neural Network (CNN)-based methods have been proposed to support this detection, utilizing patches from Whole Slide Imaging (WSI) combined with sophisticated CNNs. In this research, we introduced DECENN, a novel deep learning architecture designed to overcome the limitations of single CNN models under fixed pre-trained parameter transfer learning settings. DECENN employs an ensemble of VGG16 and DenseNet121, integrated with innovative modules such as Multi-Scale Feature Extraction, Heterogeneous Convolution Enhancement, Feature Harmonization and Fusion, and Feature Integration Output. Through progressive stages – from baseline models, intermediate DCNN and DCNN+ models, to the fully integrated DECENN model – significant performance improvements were observed in experiments using 5-fold cross-validation on the Patch Camelyon(PCam) dataset. DECENN achieved an AUC of 99.70% ± 0.12%, an F-score of 98.93% ± 0.06%, and an Accuracy of 98.92% ± 0.06%, (p<0.001). These results highlight DECENN’s potential to significantly enhance the automated detection and diagnostic accuracy of BC metastasis in biopsy specimens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
期刊最新文献
Document Layout Error Rate (DLER) metric to evaluate image segmentation methods Supervised machine learning for microbiomics: Bridging the gap between current and best practices Playing with words: Comparing the vocabulary and lexical diversity of ChatGPT and humans A survey on knowledge distillation: Recent advancements Texas rural land market integration: A causal analysis using machine learning applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1