Nanyu Mou , Mingxiang Lu , Mingchi Feng , Shuai Huang , Le Han , Damao Yao
{"title":"核聚变反应堆平面型岔流器传热能力的数值研究与实验验证","authors":"Nanyu Mou , Mingxiang Lu , Mingchi Feng , Shuai Huang , Le Han , Damao Yao","doi":"10.1016/j.nme.2024.101716","DOIUrl":null,"url":null,"abstract":"<div><p>The divertor must simultaneously withstand unprecedented high heat fluxes of up to 20 MW/m<sup>2</sup> and high-energy neutron irradiation of 14-MeV during fusion reactor operation. Accordingly, it is necessary to simultaneously meet the excellent heat dissipation capacity of the divertor and maintain good material performance in harsh neutron irradiation environments. The flat-type divertor demonstrates better heat transfer performance compared to monoblock divertor. Nevertheless, under the condition of a heat flux of 20 MW/m<sup>2</sup>, the heat transfer and thermal fatigue performance of flat-type divertor using advanced materials are still unidentified. In this study, we conducted a thorough analysis of the heat transfer capabilities and thermal fatigue characteristics of potassium-doped tungsten (KW)/Cu/Oxide dispersion strengthened copper (ODS-Cu)/reduced activation ferritic/martensitic (RAFM) divertor mockup adopts hypervaportron (HV) structure by numerical simulations combined with experiments. The numerical results indicate that the flat-type KW/Cu/ODS-Cu/RAFM divertor mockup expresses excellent heat transfer capacity. The contact area between the edge of the fins and the bottom surface of the ODS-Cu heat sink induces a significant increase in water flow velocity to ∼15 m/s. The peak temperature of loaded KW surface is only ∼985 °C under the flow rate of 5 t/h and inlet temperature of 20 °C. During the high heat flux tests, the prepared flat-type divertor mockup successful endured 1000 cycles of 20 MW/m<sup>2</sup> with the peak temperature of 883 °C, and the surface temperature experienced a fluctuation of 2.4 % during the thermal fatigue tests. This study can provide a strong data reference and technical support for the development of fusion reactors, and is of great significance in advancing the commercialization of fusion energy.</p></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"40 ","pages":"Article 101716"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235217912400139X/pdfft?md5=a0563e6197ff8e14df828e7abd537bcf&pid=1-s2.0-S235217912400139X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical study and experimental validation of heat transfer capacity of flat-type divertor for fusion reactor\",\"authors\":\"Nanyu Mou , Mingxiang Lu , Mingchi Feng , Shuai Huang , Le Han , Damao Yao\",\"doi\":\"10.1016/j.nme.2024.101716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The divertor must simultaneously withstand unprecedented high heat fluxes of up to 20 MW/m<sup>2</sup> and high-energy neutron irradiation of 14-MeV during fusion reactor operation. Accordingly, it is necessary to simultaneously meet the excellent heat dissipation capacity of the divertor and maintain good material performance in harsh neutron irradiation environments. The flat-type divertor demonstrates better heat transfer performance compared to monoblock divertor. Nevertheless, under the condition of a heat flux of 20 MW/m<sup>2</sup>, the heat transfer and thermal fatigue performance of flat-type divertor using advanced materials are still unidentified. In this study, we conducted a thorough analysis of the heat transfer capabilities and thermal fatigue characteristics of potassium-doped tungsten (KW)/Cu/Oxide dispersion strengthened copper (ODS-Cu)/reduced activation ferritic/martensitic (RAFM) divertor mockup adopts hypervaportron (HV) structure by numerical simulations combined with experiments. The numerical results indicate that the flat-type KW/Cu/ODS-Cu/RAFM divertor mockup expresses excellent heat transfer capacity. The contact area between the edge of the fins and the bottom surface of the ODS-Cu heat sink induces a significant increase in water flow velocity to ∼15 m/s. The peak temperature of loaded KW surface is only ∼985 °C under the flow rate of 5 t/h and inlet temperature of 20 °C. During the high heat flux tests, the prepared flat-type divertor mockup successful endured 1000 cycles of 20 MW/m<sup>2</sup> with the peak temperature of 883 °C, and the surface temperature experienced a fluctuation of 2.4 % during the thermal fatigue tests. This study can provide a strong data reference and technical support for the development of fusion reactors, and is of great significance in advancing the commercialization of fusion energy.</p></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"40 \",\"pages\":\"Article 101716\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S235217912400139X/pdfft?md5=a0563e6197ff8e14df828e7abd537bcf&pid=1-s2.0-S235217912400139X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235217912400139X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235217912400139X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Numerical study and experimental validation of heat transfer capacity of flat-type divertor for fusion reactor
The divertor must simultaneously withstand unprecedented high heat fluxes of up to 20 MW/m2 and high-energy neutron irradiation of 14-MeV during fusion reactor operation. Accordingly, it is necessary to simultaneously meet the excellent heat dissipation capacity of the divertor and maintain good material performance in harsh neutron irradiation environments. The flat-type divertor demonstrates better heat transfer performance compared to monoblock divertor. Nevertheless, under the condition of a heat flux of 20 MW/m2, the heat transfer and thermal fatigue performance of flat-type divertor using advanced materials are still unidentified. In this study, we conducted a thorough analysis of the heat transfer capabilities and thermal fatigue characteristics of potassium-doped tungsten (KW)/Cu/Oxide dispersion strengthened copper (ODS-Cu)/reduced activation ferritic/martensitic (RAFM) divertor mockup adopts hypervaportron (HV) structure by numerical simulations combined with experiments. The numerical results indicate that the flat-type KW/Cu/ODS-Cu/RAFM divertor mockup expresses excellent heat transfer capacity. The contact area between the edge of the fins and the bottom surface of the ODS-Cu heat sink induces a significant increase in water flow velocity to ∼15 m/s. The peak temperature of loaded KW surface is only ∼985 °C under the flow rate of 5 t/h and inlet temperature of 20 °C. During the high heat flux tests, the prepared flat-type divertor mockup successful endured 1000 cycles of 20 MW/m2 with the peak temperature of 883 °C, and the surface temperature experienced a fluctuation of 2.4 % during the thermal fatigue tests. This study can provide a strong data reference and technical support for the development of fusion reactors, and is of great significance in advancing the commercialization of fusion energy.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.