核聚变反应堆平面型岔流器传热能力的数值研究与实验验证

IF 2.3 2区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Materials and Energy Pub Date : 2024-07-25 DOI:10.1016/j.nme.2024.101716
Nanyu Mou , Mingxiang Lu , Mingchi Feng , Shuai Huang , Le Han , Damao Yao
{"title":"核聚变反应堆平面型岔流器传热能力的数值研究与实验验证","authors":"Nanyu Mou ,&nbsp;Mingxiang Lu ,&nbsp;Mingchi Feng ,&nbsp;Shuai Huang ,&nbsp;Le Han ,&nbsp;Damao Yao","doi":"10.1016/j.nme.2024.101716","DOIUrl":null,"url":null,"abstract":"<div><p>The divertor must simultaneously withstand unprecedented high heat fluxes of up to 20 MW/m<sup>2</sup> and high-energy neutron irradiation of 14-MeV during fusion reactor operation. Accordingly, it is necessary to simultaneously meet the excellent heat dissipation capacity of the divertor and maintain good material performance in harsh neutron irradiation environments. The flat-type divertor demonstrates better heat transfer performance compared to monoblock divertor. Nevertheless, under the condition of a heat flux of 20 MW/m<sup>2</sup>, the heat transfer and thermal fatigue performance of flat-type divertor using advanced materials are still unidentified. In this study, we conducted a thorough analysis of the heat transfer capabilities and thermal fatigue characteristics of potassium-doped tungsten (KW)/Cu/Oxide dispersion strengthened copper (ODS-Cu)/reduced activation ferritic/martensitic (RAFM) divertor mockup adopts hypervaportron (HV) structure by numerical simulations combined with experiments. The numerical results indicate that the flat-type KW/Cu/ODS-Cu/RAFM divertor mockup expresses excellent heat transfer capacity. The contact area between the edge of the fins and the bottom surface of the ODS-Cu heat sink induces a significant increase in water flow velocity to ∼15 m/s. The peak temperature of loaded KW surface is only ∼985 °C under the flow rate of 5 t/h and inlet temperature of 20 °C. During the high heat flux tests, the prepared flat-type divertor mockup successful endured 1000 cycles of 20 MW/m<sup>2</sup> with the peak temperature of 883 °C, and the surface temperature experienced a fluctuation of 2.4 % during the thermal fatigue tests. This study can provide a strong data reference and technical support for the development of fusion reactors, and is of great significance in advancing the commercialization of fusion energy.</p></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"40 ","pages":"Article 101716"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235217912400139X/pdfft?md5=a0563e6197ff8e14df828e7abd537bcf&pid=1-s2.0-S235217912400139X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical study and experimental validation of heat transfer capacity of flat-type divertor for fusion reactor\",\"authors\":\"Nanyu Mou ,&nbsp;Mingxiang Lu ,&nbsp;Mingchi Feng ,&nbsp;Shuai Huang ,&nbsp;Le Han ,&nbsp;Damao Yao\",\"doi\":\"10.1016/j.nme.2024.101716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The divertor must simultaneously withstand unprecedented high heat fluxes of up to 20 MW/m<sup>2</sup> and high-energy neutron irradiation of 14-MeV during fusion reactor operation. Accordingly, it is necessary to simultaneously meet the excellent heat dissipation capacity of the divertor and maintain good material performance in harsh neutron irradiation environments. The flat-type divertor demonstrates better heat transfer performance compared to monoblock divertor. Nevertheless, under the condition of a heat flux of 20 MW/m<sup>2</sup>, the heat transfer and thermal fatigue performance of flat-type divertor using advanced materials are still unidentified. In this study, we conducted a thorough analysis of the heat transfer capabilities and thermal fatigue characteristics of potassium-doped tungsten (KW)/Cu/Oxide dispersion strengthened copper (ODS-Cu)/reduced activation ferritic/martensitic (RAFM) divertor mockup adopts hypervaportron (HV) structure by numerical simulations combined with experiments. The numerical results indicate that the flat-type KW/Cu/ODS-Cu/RAFM divertor mockup expresses excellent heat transfer capacity. The contact area between the edge of the fins and the bottom surface of the ODS-Cu heat sink induces a significant increase in water flow velocity to ∼15 m/s. The peak temperature of loaded KW surface is only ∼985 °C under the flow rate of 5 t/h and inlet temperature of 20 °C. During the high heat flux tests, the prepared flat-type divertor mockup successful endured 1000 cycles of 20 MW/m<sup>2</sup> with the peak temperature of 883 °C, and the surface temperature experienced a fluctuation of 2.4 % during the thermal fatigue tests. This study can provide a strong data reference and technical support for the development of fusion reactors, and is of great significance in advancing the commercialization of fusion energy.</p></div>\",\"PeriodicalId\":56004,\"journal\":{\"name\":\"Nuclear Materials and Energy\",\"volume\":\"40 \",\"pages\":\"Article 101716\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S235217912400139X/pdfft?md5=a0563e6197ff8e14df828e7abd537bcf&pid=1-s2.0-S235217912400139X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Materials and Energy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235217912400139X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235217912400139X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在聚变反应堆运行期间,分流器必须同时承受前所未有的高达 20 MW/m2 的高热通量和 14-MeV 的高能中子辐照。因此,在恶劣的中子辐照环境中,既要满足分流器出色的散热能力,又要保持良好的材料性能。与单体分流器相比,扁平型分流器具有更好的传热性能。然而,在热通量为 20 MW/m2 的条件下,使用先进材料的扁平型分流器的传热和热疲劳性能仍未确定。在本研究中,我们通过数值模拟结合实验,对采用超蒸气管(HV)结构的掺钾钨(KW)/氧化物分散强化铜(ODS-Cu)/还原活化铁素体/马氏体(RAFM)分流器模型的传热能力和热疲劳特性进行了深入分析。数值结果表明,平面型 KW/Cu/ODS-Cu/RAFM 分流器模型具有出色的传热能力。鳍片边缘与 ODS-Cu 散热器底面之间的接触面积使水流速度显著增加到 ∼15 m/s。在流量为 5 吨/小时、入口温度为 20 °C的条件下,加载 KW 表面的峰值温度仅为 985 °C。在高热通量试验中,制备成功的平板式分流器模拟件承受了1000次20 MW/m2的循环,峰值温度为883 ℃,在热疲劳试验中表面温度波动为2.4%。这项研究可为聚变堆的发展提供有力的数据参考和技术支持,对推进聚变能的商业化具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study and experimental validation of heat transfer capacity of flat-type divertor for fusion reactor

The divertor must simultaneously withstand unprecedented high heat fluxes of up to 20 MW/m2 and high-energy neutron irradiation of 14-MeV during fusion reactor operation. Accordingly, it is necessary to simultaneously meet the excellent heat dissipation capacity of the divertor and maintain good material performance in harsh neutron irradiation environments. The flat-type divertor demonstrates better heat transfer performance compared to monoblock divertor. Nevertheless, under the condition of a heat flux of 20 MW/m2, the heat transfer and thermal fatigue performance of flat-type divertor using advanced materials are still unidentified. In this study, we conducted a thorough analysis of the heat transfer capabilities and thermal fatigue characteristics of potassium-doped tungsten (KW)/Cu/Oxide dispersion strengthened copper (ODS-Cu)/reduced activation ferritic/martensitic (RAFM) divertor mockup adopts hypervaportron (HV) structure by numerical simulations combined with experiments. The numerical results indicate that the flat-type KW/Cu/ODS-Cu/RAFM divertor mockup expresses excellent heat transfer capacity. The contact area between the edge of the fins and the bottom surface of the ODS-Cu heat sink induces a significant increase in water flow velocity to ∼15 m/s. The peak temperature of loaded KW surface is only ∼985 °C under the flow rate of 5 t/h and inlet temperature of 20 °C. During the high heat flux tests, the prepared flat-type divertor mockup successful endured 1000 cycles of 20 MW/m2 with the peak temperature of 883 °C, and the surface temperature experienced a fluctuation of 2.4 % during the thermal fatigue tests. This study can provide a strong data reference and technical support for the development of fusion reactors, and is of great significance in advancing the commercialization of fusion energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Materials and Energy
Nuclear Materials and Energy Materials Science-Materials Science (miscellaneous)
CiteScore
3.70
自引率
15.40%
发文量
175
审稿时长
20 weeks
期刊介绍: The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.
期刊最新文献
Theoretical investigation of structural, electronic, mechanical, surface work function and thermodynamic properties of La1-xMxB6 (M = Ba, Sr, Ca) compounds: Potential plasma grid materials in N-NBI system Study of spectral features and depth distributions of boron layers on tungsten substrates by ps-LIBS in a vacuum environment Initial design concepts for solid boron injection in ITER Utilization of D2 molecular band emission for electron density measurement Fast prediction of irradiation-induced cascade defects using denoising diffusion probabilistic model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1