Erfan Darzi , Yiqing Shen , Yangming Ou , Nanna M. Sijtsema , P.M.A van Ooijen
{"title":"通过调整视觉转换器解决医学联合学习中的异质性问题","authors":"Erfan Darzi , Yiqing Shen , Yangming Ou , Nanna M. Sijtsema , P.M.A van Ooijen","doi":"10.1016/j.artmed.2024.102936","DOIUrl":null,"url":null,"abstract":"<div><p>Federated learning enables training models on distributed, privacy-sensitive medical imaging data. However, data heterogeneity across participating institutions leads to reduced model performance and fairness issues, especially for underrepresented datasets. To address these challenges, we propose leveraging the multi-head attention mechanism in Vision Transformers to align the representations of heterogeneous data across clients. By focusing on the attention mechanism as the alignment objective, our approach aims to improve both the accuracy and fairness of federated learning models in medical imaging applications. We evaluate our method on the IQ-OTH/NCCD Lung Cancer dataset, simulating various levels of data heterogeneity using Latent Dirichlet Allocation (LDA). Our results demonstrate that our approach achieves competitive performance compared to state-of-the-art federated learning methods across different heterogeneity levels and improves the performance of models for underrepresented clients, promoting fairness in the federated learning setting. These findings highlight the potential of leveraging the multi-head attention mechanism to address the challenges of data heterogeneity in medical federated learning.</p></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"155 ","pages":"Article 102936"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tackling heterogeneity in medical federated learning via aligning vision transformers\",\"authors\":\"Erfan Darzi , Yiqing Shen , Yangming Ou , Nanna M. Sijtsema , P.M.A van Ooijen\",\"doi\":\"10.1016/j.artmed.2024.102936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Federated learning enables training models on distributed, privacy-sensitive medical imaging data. However, data heterogeneity across participating institutions leads to reduced model performance and fairness issues, especially for underrepresented datasets. To address these challenges, we propose leveraging the multi-head attention mechanism in Vision Transformers to align the representations of heterogeneous data across clients. By focusing on the attention mechanism as the alignment objective, our approach aims to improve both the accuracy and fairness of federated learning models in medical imaging applications. We evaluate our method on the IQ-OTH/NCCD Lung Cancer dataset, simulating various levels of data heterogeneity using Latent Dirichlet Allocation (LDA). Our results demonstrate that our approach achieves competitive performance compared to state-of-the-art federated learning methods across different heterogeneity levels and improves the performance of models for underrepresented clients, promoting fairness in the federated learning setting. These findings highlight the potential of leveraging the multi-head attention mechanism to address the challenges of data heterogeneity in medical federated learning.</p></div>\",\"PeriodicalId\":55458,\"journal\":{\"name\":\"Artificial Intelligence in Medicine\",\"volume\":\"155 \",\"pages\":\"Article 102936\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0933365724001787\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0933365724001787","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Tackling heterogeneity in medical federated learning via aligning vision transformers
Federated learning enables training models on distributed, privacy-sensitive medical imaging data. However, data heterogeneity across participating institutions leads to reduced model performance and fairness issues, especially for underrepresented datasets. To address these challenges, we propose leveraging the multi-head attention mechanism in Vision Transformers to align the representations of heterogeneous data across clients. By focusing on the attention mechanism as the alignment objective, our approach aims to improve both the accuracy and fairness of federated learning models in medical imaging applications. We evaluate our method on the IQ-OTH/NCCD Lung Cancer dataset, simulating various levels of data heterogeneity using Latent Dirichlet Allocation (LDA). Our results demonstrate that our approach achieves competitive performance compared to state-of-the-art federated learning methods across different heterogeneity levels and improves the performance of models for underrepresented clients, promoting fairness in the federated learning setting. These findings highlight the potential of leveraging the multi-head attention mechanism to address the challenges of data heterogeneity in medical federated learning.
期刊介绍:
Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care.
Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.