{"title":"MMCL-CPI:结合对比学习预训练的多模态化合物-蛋白质相互作用预测模型","authors":"","doi":"10.1016/j.compbiolchem.2024.108137","DOIUrl":null,"url":null,"abstract":"<div><h3>Motivation</h3><p>Compound-protein interaction (CPI) prediction plays a crucial role in drug discovery and drug repositioning. Early researchers relied on time-consuming and labor-intensive wet laboratory experiments. However, the advent of deep learning has significantly accelerated this progress. Most existing deep learning methods utilize deep neural networks to extract compound features from sequences and graphs, either separately or in combination. Our team’s previous research has demonstrated that compound images contain valuable information that can be leveraged for CPI task. However, there is a scarcity of multimodal methods that effectively combine sequence and image representations of compounds in CPI. Currently, the use of text-image pairs for contrastive language-image pre-training is a popular approach in the multimodal field. Further research is needed to explore how the integration of sequence and image representations can enhance the accuracy of CPI task.</p></div><div><h3>Results</h3><p>This paper presents a novel method called MMCL-CPI, which encompasses two key highlights: 1) Firstly, we propose extracting compound features from two modalities: one-dimensional SMILES and two-dimensional images. This approach enables us to capture both sequence and spatial features, enhancing the prediction accuracy for CPI. Based on this, we design a novel multimodal model. 2) Secondly, we introduce a multimodal pre-training strategy that leverages comparative learning on a large-scale unlabeled dataset to establish the correspondence between SMILES string and compound’s image. This pre-training approach significantly improves compound feature representations for downstream CPI task. Our method has shown competitive results on multiple datasets.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MMCL-CPI: A multi-modal compound-protein interaction prediction model incorporating contrastive learning pre-training\",\"authors\":\"\",\"doi\":\"10.1016/j.compbiolchem.2024.108137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Motivation</h3><p>Compound-protein interaction (CPI) prediction plays a crucial role in drug discovery and drug repositioning. Early researchers relied on time-consuming and labor-intensive wet laboratory experiments. However, the advent of deep learning has significantly accelerated this progress. Most existing deep learning methods utilize deep neural networks to extract compound features from sequences and graphs, either separately or in combination. Our team’s previous research has demonstrated that compound images contain valuable information that can be leveraged for CPI task. However, there is a scarcity of multimodal methods that effectively combine sequence and image representations of compounds in CPI. Currently, the use of text-image pairs for contrastive language-image pre-training is a popular approach in the multimodal field. Further research is needed to explore how the integration of sequence and image representations can enhance the accuracy of CPI task.</p></div><div><h3>Results</h3><p>This paper presents a novel method called MMCL-CPI, which encompasses two key highlights: 1) Firstly, we propose extracting compound features from two modalities: one-dimensional SMILES and two-dimensional images. This approach enables us to capture both sequence and spatial features, enhancing the prediction accuracy for CPI. Based on this, we design a novel multimodal model. 2) Secondly, we introduce a multimodal pre-training strategy that leverages comparative learning on a large-scale unlabeled dataset to establish the correspondence between SMILES string and compound’s image. This pre-training approach significantly improves compound feature representations for downstream CPI task. Our method has shown competitive results on multiple datasets.</p></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124001257\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001257","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
MMCL-CPI: A multi-modal compound-protein interaction prediction model incorporating contrastive learning pre-training
Motivation
Compound-protein interaction (CPI) prediction plays a crucial role in drug discovery and drug repositioning. Early researchers relied on time-consuming and labor-intensive wet laboratory experiments. However, the advent of deep learning has significantly accelerated this progress. Most existing deep learning methods utilize deep neural networks to extract compound features from sequences and graphs, either separately or in combination. Our team’s previous research has demonstrated that compound images contain valuable information that can be leveraged for CPI task. However, there is a scarcity of multimodal methods that effectively combine sequence and image representations of compounds in CPI. Currently, the use of text-image pairs for contrastive language-image pre-training is a popular approach in the multimodal field. Further research is needed to explore how the integration of sequence and image representations can enhance the accuracy of CPI task.
Results
This paper presents a novel method called MMCL-CPI, which encompasses two key highlights: 1) Firstly, we propose extracting compound features from two modalities: one-dimensional SMILES and two-dimensional images. This approach enables us to capture both sequence and spatial features, enhancing the prediction accuracy for CPI. Based on this, we design a novel multimodal model. 2) Secondly, we introduce a multimodal pre-training strategy that leverages comparative learning on a large-scale unlabeled dataset to establish the correspondence between SMILES string and compound’s image. This pre-training approach significantly improves compound feature representations for downstream CPI task. Our method has shown competitive results on multiple datasets.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.