空间数据的贝叶斯分组测试回归模型

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Spatial and Spatio-Temporal Epidemiology Pub Date : 2024-08-01 DOI:10.1016/j.sste.2024.100677
Rongjie Huang , Alexander C. McLain , Brian H. Herrin , Melissa Nolan , Bo Cai , Stella Self
{"title":"空间数据的贝叶斯分组测试回归模型","authors":"Rongjie Huang ,&nbsp;Alexander C. McLain ,&nbsp;Brian H. Herrin ,&nbsp;Melissa Nolan ,&nbsp;Bo Cai ,&nbsp;Stella Self","doi":"10.1016/j.sste.2024.100677","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial patterns are common in infectious disease epidemiology. Disease mapping is essential to infectious disease surveillance. Under a group testing protocol, biomaterial from multiple individuals is physically combined into a pooled specimen, which is then tested for infection. If the pool tests negative, all contributing individuals are generally assumed to be uninfected. If the pool tests positive, the individuals are usually retested to determine who is infected. When the prevalence of infection is low, group testing provides significant cost savings over traditional individual testing by reducing the number of tests required. However, the lack of statistical methods capable of producing maps from group testing data has limited the use of group testing in disease mapping. We develop a Bayesian methodology that can simultaneously map disease prevalence using group testing data and identify risk factors for infection. We illustrate its real-world utility using two datasets from vector-borne disease surveillance.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"50 ","pages":"Article 100677"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian group testing regression models for spatial data\",\"authors\":\"Rongjie Huang ,&nbsp;Alexander C. McLain ,&nbsp;Brian H. Herrin ,&nbsp;Melissa Nolan ,&nbsp;Bo Cai ,&nbsp;Stella Self\",\"doi\":\"10.1016/j.sste.2024.100677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatial patterns are common in infectious disease epidemiology. Disease mapping is essential to infectious disease surveillance. Under a group testing protocol, biomaterial from multiple individuals is physically combined into a pooled specimen, which is then tested for infection. If the pool tests negative, all contributing individuals are generally assumed to be uninfected. If the pool tests positive, the individuals are usually retested to determine who is infected. When the prevalence of infection is low, group testing provides significant cost savings over traditional individual testing by reducing the number of tests required. However, the lack of statistical methods capable of producing maps from group testing data has limited the use of group testing in disease mapping. We develop a Bayesian methodology that can simultaneously map disease prevalence using group testing data and identify risk factors for infection. We illustrate its real-world utility using two datasets from vector-borne disease surveillance.</p></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"50 \",\"pages\":\"Article 100677\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

空间模式在传染病流行病学中很常见。疾病分布图对传染病监测至关重要。在群体检测方案中,来自多人的生物材料被物理性地组合成一个集合标本,然后对其进行感染检测。如果样本池检测结果为阴性,则通常认为所有样本都未感染。如果样本池检测结果呈阳性,通常会对这些个体进行再次检测,以确定谁受到了感染。当感染率较低时,集体检测可减少所需的检测次数,从而比传统的个人检测节省大量成本。然而,由于缺乏能够根据群体检测数据绘制地图的统计方法,限制了群体检测在疾病绘图中的应用。我们开发了一种贝叶斯方法,可以同时利用群体检测数据绘制疾病流行图,并识别感染的风险因素。我们利用病媒传播疾病监测的两个数据集说明了这一方法在现实世界中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian group testing regression models for spatial data

Spatial patterns are common in infectious disease epidemiology. Disease mapping is essential to infectious disease surveillance. Under a group testing protocol, biomaterial from multiple individuals is physically combined into a pooled specimen, which is then tested for infection. If the pool tests negative, all contributing individuals are generally assumed to be uninfected. If the pool tests positive, the individuals are usually retested to determine who is infected. When the prevalence of infection is low, group testing provides significant cost savings over traditional individual testing by reducing the number of tests required. However, the lack of statistical methods capable of producing maps from group testing data has limited the use of group testing in disease mapping. We develop a Bayesian methodology that can simultaneously map disease prevalence using group testing data and identify risk factors for infection. We illustrate its real-world utility using two datasets from vector-borne disease surveillance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
期刊最新文献
Association between urban green space and transmission of COVID-19 in Oslo, Norway: A Bayesian SIR modeling approach Employment industry and opioid overdose risk: A pre- and post-COVID-19 comparison in Kentucky and Massachusetts 2018–2021 Editorial Board Spatial pattern of all cause excess mortality in Swiss districts during the pandemic years 1890, 1918 and 2020 Multiple “spaces”: Using wildlife surveillance, climatic variables, and spatial statistics to identify and map a climatic niche for endemic plague in California, U.S.A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1