利用超级液滴模拟训练暖雨块体微物理模型

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-26 DOI:10.1029/2023MS004028
Sajjad Azimi, Anna Jaruga, Emily de Jong, Sylwester Arabas, Tapio Schneider
{"title":"利用超级液滴模拟训练暖雨块体微物理模型","authors":"Sajjad Azimi,&nbsp;Anna Jaruga,&nbsp;Emily de Jong,&nbsp;Sylwester Arabas,&nbsp;Tapio Schneider","doi":"10.1029/2023MS004028","DOIUrl":null,"url":null,"abstract":"<p>Cloud microphysics is a critical aspect of the Earth's climate system, which involves processes at the nano- and micrometer scales of droplets and ice particles. In climate modeling, cloud microphysics is commonly represented by bulk models, which contain simplified process rates that require calibration. This study presents a framework for calibrating warm-rain bulk schemes using high-fidelity super-droplet simulations that provide a more accurate and physically based representation of cloud and precipitation processes. The calibration framework employs ensemble Kalman methods including Ensemble Kalman Inversion and Unscented Kalman Inversion to calibrate bulk microphysics schemes with probabilistic super-droplet simulations. We demonstrate the framework's effectiveness by calibrating a single-moment bulk scheme, resulting in a reduction of data-model mismatch by more than 75% compared to the model with initial parameters. Thus, this study demonstrates a powerful tool for enhancing the accuracy of bulk microphysics schemes in atmospheric models and improving climate modeling.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004028","citationCount":"0","resultStr":"{\"title\":\"Training Warm-Rain Bulk Microphysics Schemes Using Super-Droplet Simulations\",\"authors\":\"Sajjad Azimi,&nbsp;Anna Jaruga,&nbsp;Emily de Jong,&nbsp;Sylwester Arabas,&nbsp;Tapio Schneider\",\"doi\":\"10.1029/2023MS004028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cloud microphysics is a critical aspect of the Earth's climate system, which involves processes at the nano- and micrometer scales of droplets and ice particles. In climate modeling, cloud microphysics is commonly represented by bulk models, which contain simplified process rates that require calibration. This study presents a framework for calibrating warm-rain bulk schemes using high-fidelity super-droplet simulations that provide a more accurate and physically based representation of cloud and precipitation processes. The calibration framework employs ensemble Kalman methods including Ensemble Kalman Inversion and Unscented Kalman Inversion to calibrate bulk microphysics schemes with probabilistic super-droplet simulations. We demonstrate the framework's effectiveness by calibrating a single-moment bulk scheme, resulting in a reduction of data-model mismatch by more than 75% compared to the model with initial parameters. Thus, this study demonstrates a powerful tool for enhancing the accuracy of bulk microphysics schemes in atmospheric models and improving climate modeling.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004028\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004028","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

云微观物理是地球气候系统的一个重要方面,它涉及液滴和冰粒的纳米和微米尺度的过程。在气候建模中,云微物理通常由体量模型来表示,这些模型包含需要校准的简化过程速率。本研究提出了一个利用高保真超微滴模拟来校准暖雨体型方案的框架,该框架能更准确地以物理方式表示云和降水过程。校准框架采用了集合卡尔曼方法(包括集合卡尔曼反演和无标点卡尔曼反演),利用概率超级液滴模拟校准体微观物理方案。我们通过校准单时刻大体方案来证明该框架的有效性,结果与带初始参数的模型相比,数据与模型的不匹配程度降低了 75% 以上。因此,这项研究为提高大气模型中体量微物理方案的准确性和改进气候建模展示了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Training Warm-Rain Bulk Microphysics Schemes Using Super-Droplet Simulations

Cloud microphysics is a critical aspect of the Earth's climate system, which involves processes at the nano- and micrometer scales of droplets and ice particles. In climate modeling, cloud microphysics is commonly represented by bulk models, which contain simplified process rates that require calibration. This study presents a framework for calibrating warm-rain bulk schemes using high-fidelity super-droplet simulations that provide a more accurate and physically based representation of cloud and precipitation processes. The calibration framework employs ensemble Kalman methods including Ensemble Kalman Inversion and Unscented Kalman Inversion to calibrate bulk microphysics schemes with probabilistic super-droplet simulations. We demonstrate the framework's effectiveness by calibrating a single-moment bulk scheme, resulting in a reduction of data-model mismatch by more than 75% compared to the model with initial parameters. Thus, this study demonstrates a powerful tool for enhancing the accuracy of bulk microphysics schemes in atmospheric models and improving climate modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
A Lake Biogeochemistry Model for Global Methane Emissions: Model Development, Site-Level Validation, and Global Applicability Evaluation of Autoconversion Representation in E3SMv2 Using an Ensemble of Large-Eddy Simulations of Low-Level Warm Clouds Description and Evaluation of the CNRM-Cerfacs Climate Prediction System (C3PS) Generative Diffusion for Regional Surrogate Models From Sea-Ice Simulations Contributions of Irrigation Modeling, Soil Moisture and Snow Data Assimilation to High-Resolution Water Budget Estimates Over the Po Basin: Progress Towards Digital Replicas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1