R. Jalalzadeh , S. Jalalzadeh , B. Malekolkalami , Z. Davari
{"title":"对 FLRW、比安奇 I 型和 V 型rane 模型的观测约束","authors":"R. Jalalzadeh , S. Jalalzadeh , B. Malekolkalami , Z. Davari","doi":"10.1016/j.dark.2024.101591","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the compatibility of Covariant Extrinsic Gravity (CEG), a braneworld scenario with an arbitrary number of non-compact extra dimensions, with current cosmological observations. We employ the chi-square statistic and Markov Chain Monte Carlo (MCMC) methods to fit the Friedmann–Lemaître–Robertson–Walker (FLRW) and Bianchi type-I and V brane models to the latest datasets, including Hubble, Pantheon+ Supernova samples, Big Bang Nucleosynthesis (BBN), Baryon Acoustic Oscillations (BAO), and the structure growth rate, <span><math><mrow><mi>f</mi><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. Parameters for FLRW universe consist <span><math><mfenced><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(b)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(cd)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>γ</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></mfenced></math></span>, while for the Bianchi model are <span><math><mfenced><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(b)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(cd)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>γ</mi><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></mfenced></math></span>. By comparing our models to observational data, we determine the best values for cosmological parameters. For the FLRW model, these values depend on the sign of <span><math><mi>γ</mi></math></span> (which gives the time variation of gravitational constant in Hubble time unit): <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span> yields <span><math><mrow><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0000</mn><msubsup><mrow><mn>8</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00011</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00015</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>01</mn><msubsup><mrow><mn>4</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>022</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>024</mn></mrow></msubsup></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo><</mo><mn>0</mn></mrow></math></span> leads to <span><math><mrow><mi>γ</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>022</mn><msubsup><mrow><mn>6</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0062</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0054</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>02</mn><msubsup><mrow><mn>3</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>041</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>039</mn></mrow></msubsup></mrow></math></span>. It should be noted that in both cases <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>></mo><mn>0</mn></mrow></math></span>, which represents a closed universe. Similarly, for the Bianchi type-V brane model, the parameter values vary with the sign of <span><math><mi>γ</mi></math></span>, resulting in <span><math><mrow><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0008</mn><msubsup><mrow><mn>4</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00021</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00019</mn></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn><msubsup><mrow><mn>8</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0063</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0052</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>θ</mi></mrow></msubsup><mrow><mo>(</mo><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mn>4</mn><mo>.</mo><mn>1</mn><msubsup><mrow><mn>9</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msubsup></mrow></math></span> (as with the density parameter of stiff matter) for <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>γ</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>0010</mn><msubsup><mrow><mn>7</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00020</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00019</mn></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn><msubsup><mrow><mn>9</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0062</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0050</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>θ</mi></mrow></msubsup><mrow><mo>(</mo><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mn>4</mn><mo>.</mo><mn>1</mn><msubsup><mrow><mn>7</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>98</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>91</mn></mrow></msubsup></mrow></math></span> for <span><math><mrow><mi>γ</mi><mo><</mo><mn>0</mn></mrow></math></span>. In both cases <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>></mo><mn>0</mn></mrow></math></span>, which represents the Bianchi type-V, because in the Bianchi type-I, <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Subsequently, utilizing these obtained best values, we analyze the behavior of key cosmological parameters such as the Hubble parameter, deceleration parameter, distance modulus, equation of state, and density parameters that characterize both matter and the geometric component of dark energy, as functions of redshift. Our results notably show that the FLRW model with <span><math><mrow><mi>γ</mi><mo><</mo><mn>0</mn></mrow></math></span> is more compatible with observational data than the Bianchi model, based on various statistical criteria.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101591"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observational constraints on FLRW, Bianchi type I and V brane models\",\"authors\":\"R. Jalalzadeh , S. Jalalzadeh , B. Malekolkalami , Z. Davari\",\"doi\":\"10.1016/j.dark.2024.101591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the compatibility of Covariant Extrinsic Gravity (CEG), a braneworld scenario with an arbitrary number of non-compact extra dimensions, with current cosmological observations. We employ the chi-square statistic and Markov Chain Monte Carlo (MCMC) methods to fit the Friedmann–Lemaître–Robertson–Walker (FLRW) and Bianchi type-I and V brane models to the latest datasets, including Hubble, Pantheon+ Supernova samples, Big Bang Nucleosynthesis (BBN), Baryon Acoustic Oscillations (BAO), and the structure growth rate, <span><math><mrow><mi>f</mi><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. Parameters for FLRW universe consist <span><math><mfenced><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(b)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(cd)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>γ</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></mfenced></math></span>, while for the Bianchi model are <span><math><mfenced><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(b)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(cd)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>γ</mi><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></mfenced></math></span>. By comparing our models to observational data, we determine the best values for cosmological parameters. For the FLRW model, these values depend on the sign of <span><math><mi>γ</mi></math></span> (which gives the time variation of gravitational constant in Hubble time unit): <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span> yields <span><math><mrow><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0000</mn><msubsup><mrow><mn>8</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00011</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00015</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>01</mn><msubsup><mrow><mn>4</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>022</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>024</mn></mrow></msubsup></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo><</mo><mn>0</mn></mrow></math></span> leads to <span><math><mrow><mi>γ</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>022</mn><msubsup><mrow><mn>6</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0062</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0054</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>02</mn><msubsup><mrow><mn>3</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>041</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>039</mn></mrow></msubsup></mrow></math></span>. It should be noted that in both cases <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>></mo><mn>0</mn></mrow></math></span>, which represents a closed universe. Similarly, for the Bianchi type-V brane model, the parameter values vary with the sign of <span><math><mi>γ</mi></math></span>, resulting in <span><math><mrow><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0008</mn><msubsup><mrow><mn>4</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00021</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00019</mn></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn><msubsup><mrow><mn>8</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0063</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0052</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>θ</mi></mrow></msubsup><mrow><mo>(</mo><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mn>4</mn><mo>.</mo><mn>1</mn><msubsup><mrow><mn>9</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>67</mn></mrow></msubsup></mrow></math></span> (as with the density parameter of stiff matter) for <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>γ</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>0010</mn><msubsup><mrow><mn>7</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00020</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00019</mn></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>025</mn><msubsup><mrow><mn>9</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0062</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0050</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>θ</mi></mrow></msubsup><mrow><mo>(</mo><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mn>4</mn><mo>.</mo><mn>1</mn><msubsup><mrow><mn>7</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>98</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>91</mn></mrow></msubsup></mrow></math></span> for <span><math><mrow><mi>γ</mi><mo><</mo><mn>0</mn></mrow></math></span>. In both cases <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>></mo><mn>0</mn></mrow></math></span>, which represents the Bianchi type-V, because in the Bianchi type-I, <span><math><mrow><mi>β</mi><mo>=</mo><mn>0</mn></mrow></math></span>. Subsequently, utilizing these obtained best values, we analyze the behavior of key cosmological parameters such as the Hubble parameter, deceleration parameter, distance modulus, equation of state, and density parameters that characterize both matter and the geometric component of dark energy, as functions of redshift. Our results notably show that the FLRW model with <span><math><mrow><mi>γ</mi><mo><</mo><mn>0</mn></mrow></math></span> is more compatible with observational data than the Bianchi model, based on various statistical criteria.</p></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"46 \",\"pages\":\"Article 101591\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686424001730\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424001730","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Observational constraints on FLRW, Bianchi type I and V brane models
This study explores the compatibility of Covariant Extrinsic Gravity (CEG), a braneworld scenario with an arbitrary number of non-compact extra dimensions, with current cosmological observations. We employ the chi-square statistic and Markov Chain Monte Carlo (MCMC) methods to fit the Friedmann–Lemaître–Robertson–Walker (FLRW) and Bianchi type-I and V brane models to the latest datasets, including Hubble, Pantheon+ Supernova samples, Big Bang Nucleosynthesis (BBN), Baryon Acoustic Oscillations (BAO), and the structure growth rate, . Parameters for FLRW universe consist , while for the Bianchi model are . By comparing our models to observational data, we determine the best values for cosmological parameters. For the FLRW model, these values depend on the sign of (which gives the time variation of gravitational constant in Hubble time unit): yields , and and leads to , and . It should be noted that in both cases , which represents a closed universe. Similarly, for the Bianchi type-V brane model, the parameter values vary with the sign of , resulting in , , and (as with the density parameter of stiff matter) for , and , , and for . In both cases , which represents the Bianchi type-V, because in the Bianchi type-I, . Subsequently, utilizing these obtained best values, we analyze the behavior of key cosmological parameters such as the Hubble parameter, deceleration parameter, distance modulus, equation of state, and density parameters that characterize both matter and the geometric component of dark energy, as functions of redshift. Our results notably show that the FLRW model with is more compatible with observational data than the Bianchi model, based on various statistical criteria.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.