Katharine Hayhoe, Ian Scott-Fleming, Anne Stoner, Donald J. Wuebbles
{"title":"STAR-ESDM:通过信号分解生成高分辨率气候预测的通用方法","authors":"Katharine Hayhoe, Ian Scott-Fleming, Anne Stoner, Donald J. Wuebbles","doi":"10.1029/2023EF004107","DOIUrl":null,"url":null,"abstract":"<p>High-resolution climate projections are critical to assessing climate risk and developing climate resilience strategies. However, they remain limited in quality, availability, and/or geographic coverage. The Seasonal Trends and Analysis of Residuals empirical statistical downscaling model (STAR-ESDM) is a computationally-efficient, flexible approach to generating such projections that can be applied globally using predictands and predictors sourced from weather stations, gridded data sets, satellites, reanalysis, and global or regional climate models. It uses signal processing combined with Fourier filtering and kernel density estimation techniques to decompose and smooth any quasi-Gaussian time series, gridded or point-based, into multi-decadal long-term means and/or trends; static and dynamic annual cycles; and probability distributions of daily variability. Long-term predictor trends are bias-corrected and predictor components used to map predictand components to future conditions. Components are then recombined for each station or grid cell to produce a continuous, high-resolution bias-corrected and downscaled time series at the spatial and temporal scale of the predictand time series. Comparing STAR-ESDM output driven by coarse global climate model simulations with daily temperature and precipitation projections generated by a high-resolution version of the same global model demonstrates it is capable of accurately reproducing projected changes for all but the most extreme temperature and precipitation values. For most continental areas, biases in 1-in-1000 hottest and coldest temperatures are <0.5°C and biases in the 1-in-1000 wet day precipitation amounts are <5 mm/day. As climate impacts intensify, STAR-ESDM represents a significant advance in generating consistent high-resolution projections to comprehensively assess climate risk and optimize resilience globally.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004107","citationCount":"0","resultStr":"{\"title\":\"STAR-ESDM: A Generalizable Approach to Generating High-Resolution Climate Projections Through Signal Decomposition\",\"authors\":\"Katharine Hayhoe, Ian Scott-Fleming, Anne Stoner, Donald J. Wuebbles\",\"doi\":\"10.1029/2023EF004107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-resolution climate projections are critical to assessing climate risk and developing climate resilience strategies. However, they remain limited in quality, availability, and/or geographic coverage. The Seasonal Trends and Analysis of Residuals empirical statistical downscaling model (STAR-ESDM) is a computationally-efficient, flexible approach to generating such projections that can be applied globally using predictands and predictors sourced from weather stations, gridded data sets, satellites, reanalysis, and global or regional climate models. It uses signal processing combined with Fourier filtering and kernel density estimation techniques to decompose and smooth any quasi-Gaussian time series, gridded or point-based, into multi-decadal long-term means and/or trends; static and dynamic annual cycles; and probability distributions of daily variability. Long-term predictor trends are bias-corrected and predictor components used to map predictand components to future conditions. Components are then recombined for each station or grid cell to produce a continuous, high-resolution bias-corrected and downscaled time series at the spatial and temporal scale of the predictand time series. Comparing STAR-ESDM output driven by coarse global climate model simulations with daily temperature and precipitation projections generated by a high-resolution version of the same global model demonstrates it is capable of accurately reproducing projected changes for all but the most extreme temperature and precipitation values. For most continental areas, biases in 1-in-1000 hottest and coldest temperatures are <0.5°C and biases in the 1-in-1000 wet day precipitation amounts are <5 mm/day. As climate impacts intensify, STAR-ESDM represents a significant advance in generating consistent high-resolution projections to comprehensively assess climate risk and optimize resilience globally.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004107\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004107","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
STAR-ESDM: A Generalizable Approach to Generating High-Resolution Climate Projections Through Signal Decomposition
High-resolution climate projections are critical to assessing climate risk and developing climate resilience strategies. However, they remain limited in quality, availability, and/or geographic coverage. The Seasonal Trends and Analysis of Residuals empirical statistical downscaling model (STAR-ESDM) is a computationally-efficient, flexible approach to generating such projections that can be applied globally using predictands and predictors sourced from weather stations, gridded data sets, satellites, reanalysis, and global or regional climate models. It uses signal processing combined with Fourier filtering and kernel density estimation techniques to decompose and smooth any quasi-Gaussian time series, gridded or point-based, into multi-decadal long-term means and/or trends; static and dynamic annual cycles; and probability distributions of daily variability. Long-term predictor trends are bias-corrected and predictor components used to map predictand components to future conditions. Components are then recombined for each station or grid cell to produce a continuous, high-resolution bias-corrected and downscaled time series at the spatial and temporal scale of the predictand time series. Comparing STAR-ESDM output driven by coarse global climate model simulations with daily temperature and precipitation projections generated by a high-resolution version of the same global model demonstrates it is capable of accurately reproducing projected changes for all but the most extreme temperature and precipitation values. For most continental areas, biases in 1-in-1000 hottest and coldest temperatures are <0.5°C and biases in the 1-in-1000 wet day precipitation amounts are <5 mm/day. As climate impacts intensify, STAR-ESDM represents a significant advance in generating consistent high-resolution projections to comprehensively assess climate risk and optimize resilience globally.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.