利用增强的极端实例增量进行臭氧超标预报:德国案例研究

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-07-25 DOI:10.1016/j.envsoft.2024.106162
{"title":"利用增强的极端实例增量进行臭氧超标预报:德国案例研究","authors":"","doi":"10.1016/j.envsoft.2024.106162","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately forecasting ozone levels that exceed specific thresholds is pivotal for mitigating adverse effects on both the environment and public health. However, predicting such ozone exceedances remains challenging due to the infrequent occurrence of high-concentration ozone data. This research, leveraging data from 57 German monitoring stations from 1999 to 2018, introduces an Enhanced Extreme Instance Augmentation Random Forest (EEIA-RF) approach that significantly improves the prediction of days when the maximum daily 8-hour average ozone concentrations exceed <span><math><mrow><mn>120</mn><mspace></mspace><mi>μ</mi><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. A pre-trained machine learning model is used to generate additional high-concentration data, which, combined with selectively reduced low-concentration data, forms a new dataset for training a refined model. This method achieved an improvement of at least 8% in the accuracy of predicting days with ozone exceedances across Germany. Our experiment underscores the approach’s value in enhancing atmospheric modeling and supporting public health advisories and environmental policy-making related to ozone pollution.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224002238/pdfft?md5=0b6548812a7d499cf6cf3ae42866116c&pid=1-s2.0-S1364815224002238-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ozone exceedance forecasting with enhanced extreme instance augmentation: A case study in Germany\",\"authors\":\"\",\"doi\":\"10.1016/j.envsoft.2024.106162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurately forecasting ozone levels that exceed specific thresholds is pivotal for mitigating adverse effects on both the environment and public health. However, predicting such ozone exceedances remains challenging due to the infrequent occurrence of high-concentration ozone data. This research, leveraging data from 57 German monitoring stations from 1999 to 2018, introduces an Enhanced Extreme Instance Augmentation Random Forest (EEIA-RF) approach that significantly improves the prediction of days when the maximum daily 8-hour average ozone concentrations exceed <span><math><mrow><mn>120</mn><mspace></mspace><mi>μ</mi><msup><mrow><mi>g/m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. A pre-trained machine learning model is used to generate additional high-concentration data, which, combined with selectively reduced low-concentration data, forms a new dataset for training a refined model. This method achieved an improvement of at least 8% in the accuracy of predicting days with ozone exceedances across Germany. Our experiment underscores the approach’s value in enhancing atmospheric modeling and supporting public health advisories and environmental policy-making related to ozone pollution.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002238/pdfft?md5=0b6548812a7d499cf6cf3ae42866116c&pid=1-s2.0-S1364815224002238-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224002238\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002238","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

准确预测超过特定阈值的臭氧水平对于减轻对环境和公众健康的不利影响至关重要。然而,由于高浓度臭氧数据的出现频率较低,预测此类臭氧超标仍具有挑战性。本研究利用 1999 年至 2018 年期间德国 57 个监测站的数据,引入了一种增强型极端实例增强随机森林(EEIA-RF)方法,该方法可显著提高对最大日 8 小时平均臭氧浓度超过 120μg/m3 的天数的预测能力。使用预先训练好的机器学习模型来生成额外的高浓度数据,再结合选择性减少的低浓度数据,形成一个新的数据集,用于训练一个完善的模型。这种方法在预测德国境内臭氧超标天数的准确性方面至少提高了 8%。我们的实验强调了该方法在加强大气建模、支持与臭氧污染有关的公共健康咨询和环境决策方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ozone exceedance forecasting with enhanced extreme instance augmentation: A case study in Germany

Accurately forecasting ozone levels that exceed specific thresholds is pivotal for mitigating adverse effects on both the environment and public health. However, predicting such ozone exceedances remains challenging due to the infrequent occurrence of high-concentration ozone data. This research, leveraging data from 57 German monitoring stations from 1999 to 2018, introduces an Enhanced Extreme Instance Augmentation Random Forest (EEIA-RF) approach that significantly improves the prediction of days when the maximum daily 8-hour average ozone concentrations exceed 120μg/m3. A pre-trained machine learning model is used to generate additional high-concentration data, which, combined with selectively reduced low-concentration data, forms a new dataset for training a refined model. This method achieved an improvement of at least 8% in the accuracy of predicting days with ozone exceedances across Germany. Our experiment underscores the approach’s value in enhancing atmospheric modeling and supporting public health advisories and environmental policy-making related to ozone pollution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
A coordination attention residual U-Net model for enhanced short and mid-term sea surface temperature prediction An R package to partition observation data used for model development and evaluation to achieve model generalizability Dynamics of real-time forecasting failure and recovery due to data gaps: A study using EnKF-based assimilation with the Lorenz model Identification of pedestrian submerged parts in urban flooding based on images and deep learning A conceptual data modeling framework with four levels of abstraction for environmental information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1