QUIC 拥塞控制算法在星地混合应急通信场景中的特点

IF 4.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Communications Pub Date : 2024-07-19 DOI:10.1016/j.comcom.2024.07.013
Armir Bujari , Mirko Franco , Claudio E. Palazzi , Mattia Quadrini , Cesare Roseti , Francesco Zampognaro
{"title":"QUIC 拥塞控制算法在星地混合应急通信场景中的特点","authors":"Armir Bujari ,&nbsp;Mirko Franco ,&nbsp;Claudio E. Palazzi ,&nbsp;Mattia Quadrini ,&nbsp;Cesare Roseti ,&nbsp;Francesco Zampognaro","doi":"10.1016/j.comcom.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>Reliable communications play a pivotal role in ensuring an efficient response and the coordination of recovery and rescue efforts. However, conventional communication methods may not always be accessible or dependable in such situations. In such circumstances, constellations of Low Earth Orbit (LEO) satellites can provide high bandwidth capabilities with relatively low latency, making them well-suited for supporting on-the-ground disaster management teams. Satellites can either complement or replace terrestrial telecommunication infrastructures. In this context, reliance on the recently defined QUIC protocol allows for a seamless transition from terrestrial to satellite communication as needed. Therefore, we investigate the possible use of a dual-stack node architecture along with the employment of the QUIC transport protocol for emergency communications, assuming that the backhaul link used to transfer users’ applications data may need to be changed (seamlessly). We conduct an extensive emulation study, evaluating the performance of QUIC under varying queuing policies and Congestion Control Algorithm (CCA) behaviour, providing practical insights and recommendations to enhance the protocol’s efficiency and robustness. The key aspects and configurations of QUIC protocol stack are identified, presenting optimal communication configurations leveraging CoDel and BBR CCA.</p></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"225 ","pages":"Pages 239-249"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QUIC Congestion Control Algorithm characteristics in mixed satellite–terrestrial emergency communication scenarios\",\"authors\":\"Armir Bujari ,&nbsp;Mirko Franco ,&nbsp;Claudio E. Palazzi ,&nbsp;Mattia Quadrini ,&nbsp;Cesare Roseti ,&nbsp;Francesco Zampognaro\",\"doi\":\"10.1016/j.comcom.2024.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reliable communications play a pivotal role in ensuring an efficient response and the coordination of recovery and rescue efforts. However, conventional communication methods may not always be accessible or dependable in such situations. In such circumstances, constellations of Low Earth Orbit (LEO) satellites can provide high bandwidth capabilities with relatively low latency, making them well-suited for supporting on-the-ground disaster management teams. Satellites can either complement or replace terrestrial telecommunication infrastructures. In this context, reliance on the recently defined QUIC protocol allows for a seamless transition from terrestrial to satellite communication as needed. Therefore, we investigate the possible use of a dual-stack node architecture along with the employment of the QUIC transport protocol for emergency communications, assuming that the backhaul link used to transfer users’ applications data may need to be changed (seamlessly). We conduct an extensive emulation study, evaluating the performance of QUIC under varying queuing policies and Congestion Control Algorithm (CCA) behaviour, providing practical insights and recommendations to enhance the protocol’s efficiency and robustness. The key aspects and configurations of QUIC protocol stack are identified, presenting optimal communication configurations leveraging CoDel and BBR CCA.</p></div>\",\"PeriodicalId\":55224,\"journal\":{\"name\":\"Computer Communications\",\"volume\":\"225 \",\"pages\":\"Pages 239-249\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140366424002512\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424002512","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

可靠的通信在确保高效响应以及协调恢复和救援工作方面发挥着关键作用。然而,在这种情况下,传统的通信方法并不总是可以使用或可靠的。在这种情况下,低地球轨道(LEO)卫星群可提供高带宽能力,延迟时间相对较短,非常适合为实地灾害管理团队提供支持。卫星可以补充或取代地面电信基础设施。在这种情况下,依靠最近定义的 QUIC 协议可以根据需要从地面通信无缝过渡到卫星通信。因此,假定用于传输用户应用数据的回程链路可能需要改变(无缝),我们研究了在应急通信中使用 QUIC 传输协议的双栈节点架构的可能性。我们进行了广泛的模拟研究,评估了 QUIC 在不同队列策略和拥塞控制算法(CCA)行为下的性能,为提高协议的效率和稳健性提供了实用的见解和建议。研究确定了 QUIC 协议栈的关键方面和配置,提出了利用 CoDel 和 BBR CCA 的最佳通信配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QUIC Congestion Control Algorithm characteristics in mixed satellite–terrestrial emergency communication scenarios

Reliable communications play a pivotal role in ensuring an efficient response and the coordination of recovery and rescue efforts. However, conventional communication methods may not always be accessible or dependable in such situations. In such circumstances, constellations of Low Earth Orbit (LEO) satellites can provide high bandwidth capabilities with relatively low latency, making them well-suited for supporting on-the-ground disaster management teams. Satellites can either complement or replace terrestrial telecommunication infrastructures. In this context, reliance on the recently defined QUIC protocol allows for a seamless transition from terrestrial to satellite communication as needed. Therefore, we investigate the possible use of a dual-stack node architecture along with the employment of the QUIC transport protocol for emergency communications, assuming that the backhaul link used to transfer users’ applications data may need to be changed (seamlessly). We conduct an extensive emulation study, evaluating the performance of QUIC under varying queuing policies and Congestion Control Algorithm (CCA) behaviour, providing practical insights and recommendations to enhance the protocol’s efficiency and robustness. The key aspects and configurations of QUIC protocol stack are identified, presenting optimal communication configurations leveraging CoDel and BBR CCA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Communications
Computer Communications 工程技术-电信学
CiteScore
14.10
自引率
5.00%
发文量
397
审稿时长
66 days
期刊介绍: Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms. Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.
期刊最新文献
Towards proactive rumor control: When a budget constraint meets impression counts Trustless privacy-preserving data aggregation on Ethereum with hypercube network topology A survey on authentication protocols of dynamic wireless EV charging Trajectory design of UAV-aided energy-harvesting relay networks in the terahertz band A dual-tier adaptive one-class classification IDS for emerging cyberthreats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1