{"title":"基于金属氧化物的可持续水分离电催化剂研究进展","authors":"","doi":"10.1016/j.matre.2024.100283","DOIUrl":null,"url":null,"abstract":"<div><p>Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost, abundant raw materials, and impressive stability. This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions, discussing their crystal structure, composition, and surface modification influence on performance. Strategies like surface engineering, doping, and nanostructuring are evaluated for enhancing catalytic activity and stability. The key considerations for commercialization are highlighted, emphasizing ongoing research, innovation, and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666935824000533/pdfft?md5=4febdee787ba16eb182c1548799a8151&pid=1-s2.0-S2666935824000533-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Progress in metal oxide-based electrocatalysts for sustainable water splitting\",\"authors\":\"\",\"doi\":\"10.1016/j.matre.2024.100283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost, abundant raw materials, and impressive stability. This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions, discussing their crystal structure, composition, and surface modification influence on performance. Strategies like surface engineering, doping, and nanostructuring are evaluated for enhancing catalytic activity and stability. The key considerations for commercialization are highlighted, emphasizing ongoing research, innovation, and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000533/pdfft?md5=4febdee787ba16eb182c1548799a8151&pid=1-s2.0-S2666935824000533-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935824000533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Progress in metal oxide-based electrocatalysts for sustainable water splitting
Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost, abundant raw materials, and impressive stability. This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions, discussing their crystal structure, composition, and surface modification influence on performance. Strategies like surface engineering, doping, and nanostructuring are evaluated for enhancing catalytic activity and stability. The key considerations for commercialization are highlighted, emphasizing ongoing research, innovation, and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future.