Lunqian Wang , Xinghua Wang , Weilin Liu , Hao Ding , Bo Xia , Zekai Zhang , Jinglin Zhang , Sen Xu
{"title":"基于相似性特征融合的遥感图像超分辨率和分割统一架构","authors":"Lunqian Wang , Xinghua Wang , Weilin Liu , Hao Ding , Bo Xia , Zekai Zhang , Jinglin Zhang , Sen Xu","doi":"10.1016/j.displa.2024.102800","DOIUrl":null,"url":null,"abstract":"<div><p>The resolution of the image has an important impact on the accuracy of segmentation. Integrating super-resolution (SR) techniques in the semantic segmentation of remote sensing images contributes to the improvement of precision and accuracy, especially when the images are blurred. In this paper, a novel and efficient SR semantic segmentation network (SRSEN) is designed by taking advantage of the similarity between SR and segmentation tasks in feature processing. SRSEN consists of the multi-scale feature encoder, the SR fusion decoder, and the multi-path feature refinement block, which adaptively establishes the feature associations between segmentation and SR tasks to improve the segmentation accuracy of blurred images. Experiments show that the proposed method achieves higher segmentation accuracy on fuzzy images compared to state-of-the-art models. Specifically, the mIoU of the proposed SRSEN is 3%–6% higher than other state-of-the-art models on low-resolution LoveDa, Vaihingen, and Potsdam datasets.</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"84 ","pages":"Article 102800"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified architecture for super-resolution and segmentation of remote sensing images based on similarity feature fusion\",\"authors\":\"Lunqian Wang , Xinghua Wang , Weilin Liu , Hao Ding , Bo Xia , Zekai Zhang , Jinglin Zhang , Sen Xu\",\"doi\":\"10.1016/j.displa.2024.102800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The resolution of the image has an important impact on the accuracy of segmentation. Integrating super-resolution (SR) techniques in the semantic segmentation of remote sensing images contributes to the improvement of precision and accuracy, especially when the images are blurred. In this paper, a novel and efficient SR semantic segmentation network (SRSEN) is designed by taking advantage of the similarity between SR and segmentation tasks in feature processing. SRSEN consists of the multi-scale feature encoder, the SR fusion decoder, and the multi-path feature refinement block, which adaptively establishes the feature associations between segmentation and SR tasks to improve the segmentation accuracy of blurred images. Experiments show that the proposed method achieves higher segmentation accuracy on fuzzy images compared to state-of-the-art models. Specifically, the mIoU of the proposed SRSEN is 3%–6% higher than other state-of-the-art models on low-resolution LoveDa, Vaihingen, and Potsdam datasets.</p></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"84 \",\"pages\":\"Article 102800\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938224001641\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224001641","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
图像的分辨率对分割的准确性有重要影响。在遥感图像的语义分割中集成超分辨率(SR)技术有助于提高精度和准确性,尤其是在图像模糊的情况下。本文利用 SR 与特征处理中的分割任务之间的相似性,设计了一种新颖高效的 SR 语义分割网络(SRSEN)。SRSEN 由多尺度特征编码器、SR 融合解码器和多路径特征细化块组成,可自适应地建立分割任务和 SR 任务之间的特征关联,从而提高模糊图像的分割精度。实验表明,与最先进的模型相比,所提出的方法在模糊图像上实现了更高的分割精度。具体来说,在低分辨率的 LoveDa、Vaihingen 和 Potsdam 数据集上,所提出的 SRSEN 的 mIoU 比其他先进模型高出 3%-6%。
A unified architecture for super-resolution and segmentation of remote sensing images based on similarity feature fusion
The resolution of the image has an important impact on the accuracy of segmentation. Integrating super-resolution (SR) techniques in the semantic segmentation of remote sensing images contributes to the improvement of precision and accuracy, especially when the images are blurred. In this paper, a novel and efficient SR semantic segmentation network (SRSEN) is designed by taking advantage of the similarity between SR and segmentation tasks in feature processing. SRSEN consists of the multi-scale feature encoder, the SR fusion decoder, and the multi-path feature refinement block, which adaptively establishes the feature associations between segmentation and SR tasks to improve the segmentation accuracy of blurred images. Experiments show that the proposed method achieves higher segmentation accuracy on fuzzy images compared to state-of-the-art models. Specifically, the mIoU of the proposed SRSEN is 3%–6% higher than other state-of-the-art models on low-resolution LoveDa, Vaihingen, and Potsdam datasets.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.