利用卫星图像的视觉解读和面向对象的分割绘制尘源图的新方法

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-07-23 DOI:10.1016/j.acags.2024.100182
Ali Darvishi Boloorani , Nastaran Nasiri , Masoud Soleimani , Ramin Papi , Fatemeh Amiri , Najmeh Neysani Samany , Azher Ibrahim Al-Taei , Saham Mirzaei , Ali Al-Hemoud
{"title":"利用卫星图像的视觉解读和面向对象的分割绘制尘源图的新方法","authors":"Ali Darvishi Boloorani ,&nbsp;Nastaran Nasiri ,&nbsp;Masoud Soleimani ,&nbsp;Ramin Papi ,&nbsp;Fatemeh Amiri ,&nbsp;Najmeh Neysani Samany ,&nbsp;Azher Ibrahim Al-Taei ,&nbsp;Saham Mirzaei ,&nbsp;Ali Al-Hemoud","doi":"10.1016/j.acags.2024.100182","DOIUrl":null,"url":null,"abstract":"<div><p>The emission of dust particles, mainly from arid and semi-arid lands, as a result of climate change and human activities, is known to be a global issue. Identifying dust emission sources is the first key step in dealing with the hazardous consequences of this rising phenomenon. This study is an attempt to address one of the major challenges in mapping dust emission sources. Accordingly, an innovative approach based on visual interpretation of multi-temporal MODIS-Terra/Aqua imagery and object-oriented image segmentation techniques has been developed and implemented in the study areas of the Tigris and Euphrates basin and eastern Iran. This approach takes advantage of land surface characteristics (i.e., dust drivers), including geomorphology, soil, land use/cover, and land surface radiation, to attribute dust emission hotspots to their corresponding areas using multi-source remote sensing data. The results show that the multi-resolution segmentation algorithm with optimized parameters can identify homogeneous segments corresponding to dust emission sources in the study areas with an average spatial agreement of ∼92% compared to the reference areas. Our findings emphasize the robustness and generalizability of the proposed approach, and its capabilities can be used in a complementary way with visual interpretation of satellite images to map dust sources with high spatial accuracy.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100182"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000296/pdfft?md5=0b358b93723ad5c50c855916090d135f&pid=1-s2.0-S2590197424000296-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new approach to dust source mapping using visual interpretation and object-oriented segmentation of satellite imagery\",\"authors\":\"Ali Darvishi Boloorani ,&nbsp;Nastaran Nasiri ,&nbsp;Masoud Soleimani ,&nbsp;Ramin Papi ,&nbsp;Fatemeh Amiri ,&nbsp;Najmeh Neysani Samany ,&nbsp;Azher Ibrahim Al-Taei ,&nbsp;Saham Mirzaei ,&nbsp;Ali Al-Hemoud\",\"doi\":\"10.1016/j.acags.2024.100182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The emission of dust particles, mainly from arid and semi-arid lands, as a result of climate change and human activities, is known to be a global issue. Identifying dust emission sources is the first key step in dealing with the hazardous consequences of this rising phenomenon. This study is an attempt to address one of the major challenges in mapping dust emission sources. Accordingly, an innovative approach based on visual interpretation of multi-temporal MODIS-Terra/Aqua imagery and object-oriented image segmentation techniques has been developed and implemented in the study areas of the Tigris and Euphrates basin and eastern Iran. This approach takes advantage of land surface characteristics (i.e., dust drivers), including geomorphology, soil, land use/cover, and land surface radiation, to attribute dust emission hotspots to their corresponding areas using multi-source remote sensing data. The results show that the multi-resolution segmentation algorithm with optimized parameters can identify homogeneous segments corresponding to dust emission sources in the study areas with an average spatial agreement of ∼92% compared to the reference areas. Our findings emphasize the robustness and generalizability of the proposed approach, and its capabilities can be used in a complementary way with visual interpretation of satellite images to map dust sources with high spatial accuracy.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"23 \",\"pages\":\"Article 100182\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000296/pdfft?md5=0b358b93723ad5c50c855916090d135f&pid=1-s2.0-S2590197424000296-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,由于气候变化和人类活动,主要来自干旱和半干旱地区的尘埃粒子排放已成为一个全球性问题。确定沙尘排放源是应对这一日益严重的现象所造成的危险后果的关键第一步。本研究试图解决绘制沙尘排放源地图所面临的主要挑战之一。因此,在底格里斯河和幼发拉底河流域以及伊朗东部的研究区域,开发并实施了一种基于多时相 MODIS-Terra/Aqua 图像视觉判读和面向对象的图像分割技术的创新方法。该方法利用地表特征(即沙尘驱动因素),包括地貌、土壤、土地利用/覆盖和地表辐射,使用多源遥感数据将沙尘排放热点归属到相应区域。结果表明,采用优化参数的多分辨率分段算法可以识别出研究区域中与沙尘排放源相对应的同质分段,与参考区域相比,平均空间吻合度高达 92%。我们的研究结果强调了所提出方法的稳健性和通用性,其功能可与卫星图像的目视判读相辅相成,以高空间精度绘制尘源图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approach to dust source mapping using visual interpretation and object-oriented segmentation of satellite imagery

The emission of dust particles, mainly from arid and semi-arid lands, as a result of climate change and human activities, is known to be a global issue. Identifying dust emission sources is the first key step in dealing with the hazardous consequences of this rising phenomenon. This study is an attempt to address one of the major challenges in mapping dust emission sources. Accordingly, an innovative approach based on visual interpretation of multi-temporal MODIS-Terra/Aqua imagery and object-oriented image segmentation techniques has been developed and implemented in the study areas of the Tigris and Euphrates basin and eastern Iran. This approach takes advantage of land surface characteristics (i.e., dust drivers), including geomorphology, soil, land use/cover, and land surface radiation, to attribute dust emission hotspots to their corresponding areas using multi-source remote sensing data. The results show that the multi-resolution segmentation algorithm with optimized parameters can identify homogeneous segments corresponding to dust emission sources in the study areas with an average spatial agreement of ∼92% compared to the reference areas. Our findings emphasize the robustness and generalizability of the proposed approach, and its capabilities can be used in a complementary way with visual interpretation of satellite images to map dust sources with high spatial accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1