南极地表融化的物理信息超分辨率降尺度研究

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-07-25 DOI:10.1029/2023MS004212
Sophie de Roda Husman, Zhongyang Hu, Maurice van Tiggelen, Rebecca Dell, Jordi Bolibar, Stef Lhermitte, Bert Wouters, Peter Kuipers Munneke
{"title":"南极地表融化的物理信息超分辨率降尺度研究","authors":"Sophie de Roda Husman,&nbsp;Zhongyang Hu,&nbsp;Maurice van Tiggelen,&nbsp;Rebecca Dell,&nbsp;Jordi Bolibar,&nbsp;Stef Lhermitte,&nbsp;Bert Wouters,&nbsp;Peter Kuipers Munneke","doi":"10.1029/2023MS004212","DOIUrl":null,"url":null,"abstract":"<p>Because Antarctic surface melt is mostly driven by local processes, its simulation necessitates high-resolution regional climate models (RCMs). However, the current horizontal resolution of RCMs (≈25–30 km) is inadequate for capturing small-scale melt processes. To address this limitation, we present SUPREME (SUPer-REsolution-based Melt Estimation over Antarctica), a deep learning method to downscale surface melt to 5.5 km resolution using a physically-informed super-resolution model. The physical information integrated into the model originates from observations tied to surface melt, specifically remote sensing-derived albedo and elevation. These remote sensing data, in addition to a Regional Atmospheric Climate Model (RACMO) run at 27 km resolution, account for the diverse drivers of surface melt across Antarctica, facilitating effective generalization beyond the training region of the Antarctic Peninsula. A comparison of SUPREME with a dynamically downscaled RACMO run at 5.5 km over the Antarctic Peninsula shows high accuracy, with average yearly RMSE and bias of 5.5 mm w.e. yr<sup>−1</sup> and 4.5 mm w.e. yr<sup>−1</sup>, respectively. Validation at five automatic weather stations reveals SUPREME's marked improvement with substantially lower average RMSE (81 mm w.e.) compared to RACMO 27 km (129 mm w.e.). Beyond the training region, SUPREME aligns more closely with remote sensing products associated with surface melt than super-resolution models lacking physical constraints. While further validation of SUPREME is needed, our study highlights the potential of super-resolution techniques with physical constraints for high-resolution surface melt monitoring in Antarctica, providing insights into the impacts of localized melting on processes affecting ice shelf integrity such as hydrofracturing.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004212","citationCount":"0","resultStr":"{\"title\":\"Physically-Informed Super-Resolution Downscaling of Antarctic Surface Melt\",\"authors\":\"Sophie de Roda Husman,&nbsp;Zhongyang Hu,&nbsp;Maurice van Tiggelen,&nbsp;Rebecca Dell,&nbsp;Jordi Bolibar,&nbsp;Stef Lhermitte,&nbsp;Bert Wouters,&nbsp;Peter Kuipers Munneke\",\"doi\":\"10.1029/2023MS004212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Because Antarctic surface melt is mostly driven by local processes, its simulation necessitates high-resolution regional climate models (RCMs). However, the current horizontal resolution of RCMs (≈25–30 km) is inadequate for capturing small-scale melt processes. To address this limitation, we present SUPREME (SUPer-REsolution-based Melt Estimation over Antarctica), a deep learning method to downscale surface melt to 5.5 km resolution using a physically-informed super-resolution model. The physical information integrated into the model originates from observations tied to surface melt, specifically remote sensing-derived albedo and elevation. These remote sensing data, in addition to a Regional Atmospheric Climate Model (RACMO) run at 27 km resolution, account for the diverse drivers of surface melt across Antarctica, facilitating effective generalization beyond the training region of the Antarctic Peninsula. A comparison of SUPREME with a dynamically downscaled RACMO run at 5.5 km over the Antarctic Peninsula shows high accuracy, with average yearly RMSE and bias of 5.5 mm w.e. yr<sup>−1</sup> and 4.5 mm w.e. yr<sup>−1</sup>, respectively. Validation at five automatic weather stations reveals SUPREME's marked improvement with substantially lower average RMSE (81 mm w.e.) compared to RACMO 27 km (129 mm w.e.). Beyond the training region, SUPREME aligns more closely with remote sensing products associated with surface melt than super-resolution models lacking physical constraints. While further validation of SUPREME is needed, our study highlights the potential of super-resolution techniques with physical constraints for high-resolution surface melt monitoring in Antarctica, providing insights into the impacts of localized melting on processes affecting ice shelf integrity such as hydrofracturing.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004212\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004212\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004212","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于南极地表融化主要由局部过程驱动,因此其模拟需要高分辨率的区域气候模式(RCMs)。然而,目前区域气候模式的水平分辨率(≈25-30 公里)不足以捕捉小尺度的融化过程。为了解决这一局限性,我们提出了 SUPREME(基于南极融化估算的超分辨率模型),这是一种深度学习方法,利用物理信息超分辨率模型将地表融化降级到 5.5 千米分辨率。集成到模型中的物理信息来自与地表融化相关的观测数据,特别是遥感得出的反照率和海拔高度。这些遥感数据以及以 27 千米分辨率运行的区域大气气候模型(RACMO),考虑到了整个南极洲地表融化的各种驱动因素,有助于在南极半岛训练区域之外进行有效推广。将 SUPREME 与南极半岛上空 5.5 千米分辨率的 RACMO 动态降尺度运行结果进行比较,结果表明 SUPREME 具有很高的准确性,年均均方差和偏差分别为 5.5 毫米(湿重)/年和 4.5 毫米(湿重)/年。在五个自动气象站的验证显示,SUPREME 的平均有效值(81 毫米湿重)比 RACMO 27 公里(129 毫米湿重)低得多,有明显的改进。在训练区域之外,与缺乏物理约束的超分辨率模型相比,SUPREME 与地表融化相关的遥感产品更加吻合。虽然 SUPREME 还需要进一步验证,但我们的研究强调了具有物理约束条件的超分辨率技术在南极洲高分辨率地表融化监测方面的潜力,为了解局部融化对影响冰架完整性的过程(如水力压裂)的影响提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physically-Informed Super-Resolution Downscaling of Antarctic Surface Melt

Because Antarctic surface melt is mostly driven by local processes, its simulation necessitates high-resolution regional climate models (RCMs). However, the current horizontal resolution of RCMs (≈25–30 km) is inadequate for capturing small-scale melt processes. To address this limitation, we present SUPREME (SUPer-REsolution-based Melt Estimation over Antarctica), a deep learning method to downscale surface melt to 5.5 km resolution using a physically-informed super-resolution model. The physical information integrated into the model originates from observations tied to surface melt, specifically remote sensing-derived albedo and elevation. These remote sensing data, in addition to a Regional Atmospheric Climate Model (RACMO) run at 27 km resolution, account for the diverse drivers of surface melt across Antarctica, facilitating effective generalization beyond the training region of the Antarctic Peninsula. A comparison of SUPREME with a dynamically downscaled RACMO run at 5.5 km over the Antarctic Peninsula shows high accuracy, with average yearly RMSE and bias of 5.5 mm w.e. yr−1 and 4.5 mm w.e. yr−1, respectively. Validation at five automatic weather stations reveals SUPREME's marked improvement with substantially lower average RMSE (81 mm w.e.) compared to RACMO 27 km (129 mm w.e.). Beyond the training region, SUPREME aligns more closely with remote sensing products associated with surface melt than super-resolution models lacking physical constraints. While further validation of SUPREME is needed, our study highlights the potential of super-resolution techniques with physical constraints for high-resolution surface melt monitoring in Antarctica, providing insights into the impacts of localized melting on processes affecting ice shelf integrity such as hydrofracturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
A Lake Biogeochemistry Model for Global Methane Emissions: Model Development, Site-Level Validation, and Global Applicability Evaluation of Autoconversion Representation in E3SMv2 Using an Ensemble of Large-Eddy Simulations of Low-Level Warm Clouds Description and Evaluation of the CNRM-Cerfacs Climate Prediction System (C3PS) Generative Diffusion for Regional Surrogate Models From Sea-Ice Simulations Contributions of Irrigation Modeling, Soil Moisture and Snow Data Assimilation to High-Resolution Water Budget Estimates Over the Po Basin: Progress Towards Digital Replicas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1