实现互联车辆的零信任安全:全面调查

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Computers & Security Pub Date : 2024-07-26 DOI:10.1016/j.cose.2024.104018
{"title":"实现互联车辆的零信任安全:全面调查","authors":"","doi":"10.1016/j.cose.2024.104018","DOIUrl":null,"url":null,"abstract":"<div><p>Zero Trust is the new cybersecurity model that challenges the traditional one by promoting continuous verification of users, devices, and applications, whatever their position or origin. This model is critical for reducing the attack surface and preventing lateral movement without relying on implicit trust. Adopting the zero trust principle in Intelligent Transportation Systems (ITS), especially in the context of connected vehicles (CVs), presents an adequate solution in the face of increasing cyber threats, thereby strengthening the ITS environment. This paper offers an understanding of Zero Trust security through a comprehensive review of existing literature, principles, and challenges. It specifically examines its applications in emerging technologies, particularly within connected vehicles, addressing potential issues and cyber threats faced by CVs. Inclusion/exclusion criteria for the systematic literature review were planned alongside a bibliometric analysis. Moreover, keywords co-occurrence analysis has been done, which indicates trends and general themes in the whole for Zero Trust model, Zero Trust implementation, and Zero Trust application. Furthermore, the paper explores various ZT models proposed in the literature for connected vehicles, shedding light on the challenges associated with their integration into CV systems. Future directions of this research will focus on incorporating Zero Trust principles within Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication paradigms. This initiative intends to enhance the security posture and safety protocols within interconnected vehicular networks. The proposed research seeks to address the unique cybersecurity vulnerabilities inherent in the highly dynamic nature of vehicular communication systems.</p></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards zero trust security in connected vehicles: A comprehensive survey\",\"authors\":\"\",\"doi\":\"10.1016/j.cose.2024.104018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zero Trust is the new cybersecurity model that challenges the traditional one by promoting continuous verification of users, devices, and applications, whatever their position or origin. This model is critical for reducing the attack surface and preventing lateral movement without relying on implicit trust. Adopting the zero trust principle in Intelligent Transportation Systems (ITS), especially in the context of connected vehicles (CVs), presents an adequate solution in the face of increasing cyber threats, thereby strengthening the ITS environment. This paper offers an understanding of Zero Trust security through a comprehensive review of existing literature, principles, and challenges. It specifically examines its applications in emerging technologies, particularly within connected vehicles, addressing potential issues and cyber threats faced by CVs. Inclusion/exclusion criteria for the systematic literature review were planned alongside a bibliometric analysis. Moreover, keywords co-occurrence analysis has been done, which indicates trends and general themes in the whole for Zero Trust model, Zero Trust implementation, and Zero Trust application. Furthermore, the paper explores various ZT models proposed in the literature for connected vehicles, shedding light on the challenges associated with their integration into CV systems. Future directions of this research will focus on incorporating Zero Trust principles within Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication paradigms. This initiative intends to enhance the security posture and safety protocols within interconnected vehicular networks. The proposed research seeks to address the unique cybersecurity vulnerabilities inherent in the highly dynamic nature of vehicular communication systems.</p></div>\",\"PeriodicalId\":51004,\"journal\":{\"name\":\"Computers & Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167404824003237\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824003237","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

零信任是一种新的网络安全模式,它通过促进对用户、设备和应用程序的持续验证(无论其位置或来源如何)来挑战传统模式。这种模式对于减少攻击面和防止横向移动而不依赖隐性信任至关重要。在智能交通系统(ITS)中采用零信任原则,特别是在互联车辆(CVs)中采用零信任原则,是面对日益增长的网络威胁的适当解决方案,从而加强了 ITS 环境。本文通过对现有文献、原则和挑战的全面回顾,介绍了对零信任安全的理解。本文特别研究了零信任安全在新兴技术中的应用,尤其是在联网车辆中的应用,探讨了联网车辆面临的潜在问题和网络威胁。在进行文献计量分析的同时,还规划了系统性文献综述的纳入/排除标准。此外,还进行了关键词共现分析,指出了零信任模式、零信任实施和零信任应用的整体趋势和一般主题。此外,本文还探讨了文献中针对联网汽车提出的各种零信任模型,揭示了将这些模型集成到 CV 系统中的相关挑战。本研究的未来方向将侧重于将零信任原则纳入车对车(V2V)和车对基础设施(V2I)通信范例。这项倡议旨在加强互联车辆网络内的安全态势和安全协议。拟议的研究旨在解决车辆通信系统高度动态特性中固有的独特网络安全漏洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards zero trust security in connected vehicles: A comprehensive survey

Zero Trust is the new cybersecurity model that challenges the traditional one by promoting continuous verification of users, devices, and applications, whatever their position or origin. This model is critical for reducing the attack surface and preventing lateral movement without relying on implicit trust. Adopting the zero trust principle in Intelligent Transportation Systems (ITS), especially in the context of connected vehicles (CVs), presents an adequate solution in the face of increasing cyber threats, thereby strengthening the ITS environment. This paper offers an understanding of Zero Trust security through a comprehensive review of existing literature, principles, and challenges. It specifically examines its applications in emerging technologies, particularly within connected vehicles, addressing potential issues and cyber threats faced by CVs. Inclusion/exclusion criteria for the systematic literature review were planned alongside a bibliometric analysis. Moreover, keywords co-occurrence analysis has been done, which indicates trends and general themes in the whole for Zero Trust model, Zero Trust implementation, and Zero Trust application. Furthermore, the paper explores various ZT models proposed in the literature for connected vehicles, shedding light on the challenges associated with their integration into CV systems. Future directions of this research will focus on incorporating Zero Trust principles within Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication paradigms. This initiative intends to enhance the security posture and safety protocols within interconnected vehicular networks. The proposed research seeks to address the unique cybersecurity vulnerabilities inherent in the highly dynamic nature of vehicular communication systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
期刊最新文献
A survey on privacy and security issues in IoT-based environments: Technologies, protection measures and future directions Practically implementing an LLM-supported collaborative vulnerability remediation process: A team-based approach An enhanced Deep-Learning empowered Threat-Hunting Framework for software-defined Internet of Things Editorial Board ReckDroid: Detecting red packet fraud in Android apps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1