{"title":"封底内页,第 3 卷第 3 号,2024 年 7 月","authors":"Sankara Arunachalam, Himanshu Mishra","doi":"10.1002/dro2.143","DOIUrl":null,"url":null,"abstract":"<p><b>Inside Back Cover</b>: The cover image is based on the Research Article <i>Collective wetting transitions of submerged gas-entrapping microtextured surfaces</i> by Arunachalam and Mishra.</p><p>A variety of scenarios entail undesirable or accidental immersion in water, e.g., “smart” gadgets or air-breathing marine/land insects. We found that the air-filled microcavities can “communicate” with each other via diffusion and, thus, exhibit directionality as they get filled. The fascinating science behind this collective, directional wetting transitions is unveiled, which should inspire technologies for protecting devices against water ingression. (DOI: 10.1002/dro2.135)\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.143","citationCount":"0","resultStr":"{\"title\":\"Inside Back Cover, Volume 3, Number 3, July 2024\",\"authors\":\"Sankara Arunachalam, Himanshu Mishra\",\"doi\":\"10.1002/dro2.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Inside Back Cover</b>: The cover image is based on the Research Article <i>Collective wetting transitions of submerged gas-entrapping microtextured surfaces</i> by Arunachalam and Mishra.</p><p>A variety of scenarios entail undesirable or accidental immersion in water, e.g., “smart” gadgets or air-breathing marine/land insects. We found that the air-filled microcavities can “communicate” with each other via diffusion and, thus, exhibit directionality as they get filled. The fascinating science behind this collective, directional wetting transitions is unveiled, which should inspire technologies for protecting devices against water ingression. (DOI: 10.1002/dro2.135)\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":100381,\"journal\":{\"name\":\"Droplet\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.143\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Droplet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dro2.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inside Back Cover: The cover image is based on the Research Article Collective wetting transitions of submerged gas-entrapping microtextured surfaces by Arunachalam and Mishra.
A variety of scenarios entail undesirable or accidental immersion in water, e.g., “smart” gadgets or air-breathing marine/land insects. We found that the air-filled microcavities can “communicate” with each other via diffusion and, thus, exhibit directionality as they get filled. The fascinating science behind this collective, directional wetting transitions is unveiled, which should inspire technologies for protecting devices against water ingression. (DOI: 10.1002/dro2.135)