利用迁移学习和数据扩增使 UWB AoA 估计适应未知环境

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Internet of Things Pub Date : 2024-07-19 DOI:10.1016/j.iot.2024.101298
{"title":"利用迁移学习和数据扩增使 UWB AoA 估计适应未知环境","authors":"","doi":"10.1016/j.iot.2024.101298","DOIUrl":null,"url":null,"abstract":"<div><p>Ultra-wideband technology has become increasingly prevalent in localization systems, particularly with the emergence of multi-antenna systems capable of estimating both distance and angle of arrival (AoA) for incoming signals. However, most scientific research analyzes the accuracy of AoA in one specific environment for which the estimator is trained. In this paper, we analyze the performance of various AoA estimation algorithms, such as deep convolutional neural networks (DCNN), multiple signal classification (MUSIC), and phase difference of arrival (PDoA), in unseen environments. Prior work already demonstrated the superior performance of ML for AoA estimation compared to PDoA or MUSIC. We show that MUSIC, PDoA and ML solutions suffer from degradation in unseen environments at the 90th percentile of error, with ML-based AoA estimation degrading by about 14 degrees in unseen environments compared to 4 degrees for PDoA. We demonstrate that while PDoA more effectively corrects AoA at the median level in unseen environments, ML-based methods excel at correcting higher-percentile AoA errors, including outliers. Finally, we propose a novel framework to further improve the correction of AoA outliers for DCNN-based AoA estimators using data augmentation and transfer learning, resulting in a median angular error of only 5 degrees in unseen environments, even considering a field of view up to 90 degrees.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapting UWB AoA estimation towards unseen environments using transfer learning and data augmentation\",\"authors\":\"\",\"doi\":\"10.1016/j.iot.2024.101298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultra-wideband technology has become increasingly prevalent in localization systems, particularly with the emergence of multi-antenna systems capable of estimating both distance and angle of arrival (AoA) for incoming signals. However, most scientific research analyzes the accuracy of AoA in one specific environment for which the estimator is trained. In this paper, we analyze the performance of various AoA estimation algorithms, such as deep convolutional neural networks (DCNN), multiple signal classification (MUSIC), and phase difference of arrival (PDoA), in unseen environments. Prior work already demonstrated the superior performance of ML for AoA estimation compared to PDoA or MUSIC. We show that MUSIC, PDoA and ML solutions suffer from degradation in unseen environments at the 90th percentile of error, with ML-based AoA estimation degrading by about 14 degrees in unseen environments compared to 4 degrees for PDoA. We demonstrate that while PDoA more effectively corrects AoA at the median level in unseen environments, ML-based methods excel at correcting higher-percentile AoA errors, including outliers. Finally, we propose a novel framework to further improve the correction of AoA outliers for DCNN-based AoA estimators using data augmentation and transfer learning, resulting in a median angular error of only 5 degrees in unseen environments, even considering a field of view up to 90 degrees.</p></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002397\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002397","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

超宽带技术在定位系统中的应用越来越普遍,特别是随着能够估计传入信号的距离和到达角(AoA)的多天线系统的出现。然而,大多数科学研究分析的是在一个特定环境中 AoA 的准确性,而估计器则是针对该环境进行训练的。在本文中,我们分析了深度卷积神经网络 (DCNN)、多信号分类 (MUSIC) 和到达相位差 (PDoA) 等各种 AoA 估计算法在未知环境中的性能。先前的工作已经证明,与 PDoA 或 MUSIC 相比,ML 在 AoA 估计方面的性能更优越。我们的研究表明,在不可见环境中,MUSIC、PDoA 和 ML 解决方案在第 90 百分位误差时都会出现性能下降,在不可见环境中,基于 ML 的 AoA 估计会下降约 14 度,而 PDoA 只下降 4 度。我们证明,虽然 PDoA 能更有效地修正不可见环境中中位数水平的 AoA,但基于 ML 的方法擅长修正较高百分位数的 AoA 误差,包括异常值。最后,我们提出了一个新颖的框架,利用数据增强和迁移学习进一步改进基于 DCNN 的 AoA 估计器对 AoA 离群值的校正,即使考虑到 90 度的视场,在未见环境中的中位角度误差也仅为 5 度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adapting UWB AoA estimation towards unseen environments using transfer learning and data augmentation

Ultra-wideband technology has become increasingly prevalent in localization systems, particularly with the emergence of multi-antenna systems capable of estimating both distance and angle of arrival (AoA) for incoming signals. However, most scientific research analyzes the accuracy of AoA in one specific environment for which the estimator is trained. In this paper, we analyze the performance of various AoA estimation algorithms, such as deep convolutional neural networks (DCNN), multiple signal classification (MUSIC), and phase difference of arrival (PDoA), in unseen environments. Prior work already demonstrated the superior performance of ML for AoA estimation compared to PDoA or MUSIC. We show that MUSIC, PDoA and ML solutions suffer from degradation in unseen environments at the 90th percentile of error, with ML-based AoA estimation degrading by about 14 degrees in unseen environments compared to 4 degrees for PDoA. We demonstrate that while PDoA more effectively corrects AoA at the median level in unseen environments, ML-based methods excel at correcting higher-percentile AoA errors, including outliers. Finally, we propose a novel framework to further improve the correction of AoA outliers for DCNN-based AoA estimators using data augmentation and transfer learning, resulting in a median angular error of only 5 degrees in unseen environments, even considering a field of view up to 90 degrees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
期刊最新文献
Adaptive Single-layer Aggregation Framework for Energy-efficient and Privacy-preserving Load Forecasting in Heterogeneous Federated Smart Grids Robust and efficient three-factor authentication solution for WSN-based industrial IoT deployment Environmental noise monitoring using distributed hierarchical wireless acoustic sensor network Quantifying impact: Bibliometric examination of IoT's evolution in sustainable development An IoT-based contactless neonatal respiratory monitoring system for neonatal care assistance in postpartum center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1