Jowi Rapha P. Cruz , Alvie A. Astronomo , Gil Nonato Santos , Ryan U. Olivares
{"title":"基于 PHITS 的 TRIGA 燃料亚临界反应堆伽马剂量测绘计算模型","authors":"Jowi Rapha P. Cruz , Alvie A. Astronomo , Gil Nonato Santos , Ryan U. Olivares","doi":"10.1016/j.net.2024.07.043","DOIUrl":null,"url":null,"abstract":"<div><div>Since 1988, the Philippines lacked local access to a nuclear facility, creating a significant void in this field of study for Filipinos. However, after a hiatus of 34 years, this gap was addressed with the recent authorization granted to Philippine Research Reactor 1 (PRR-1) Subcritical Assembly for Training, Education, and Research (SATER), allowing it to resume operations. In this work, a PHITS-based computational model was developed for the recently commissioned PRR-1 SATER. The model utilized a simplified model of the Training, Research, Isotope, General Atomics (TRIGA) fuel that releases photons with 0.6617 MeV energy from the Cs-137 fission product in the fuel. Compared to previous works on photon transport mapping, which utilized average source definition, this study employed individually defined fuel intensities and compared them with the averaged source definition for the fuel. The two fuel source definitions showed noticeable differences inside the reactor tank which is relevant for mixed-field irradiation applications of a research reactor. However, defining the fuel rods by their average strength is sufficient for radiation protection purposes. Simulations were also performed for fuel source definitions based on the average and ±1 standard deviation of the gamma intensity. Gamma doses received by cylindrical phantoms positioned at 0.5 m from the surface of the reactor tank for 500 h were found to be 1 % of the radiation dose limits per year and 4 % of the average dose limit for 5 years as stipulated by the Code of Philippine Nuclear Research Institute (PNRI) Regulations. Loss of water accident was also analyzed based on a conservative exposure time of 500 h. This resulted in a dose value that is only 45.5 % of the dose identified as the emergency turnback guidance of the IAEA. Lastly, PHITS calculated values of gamma doses were found to agree well, with 0.98 ratio, when compared with gamma doses measured at specified locations in the reactor. Results of this study confirm the inherent safety of the PRR-1 SATER in terms of radiological shielding for Cs-137 photons.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"56 12","pages":"Pages 5339-5345"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PHITS based-computational model of a TRIGA-fueled subcritical reactor for gamma dose mapping\",\"authors\":\"Jowi Rapha P. Cruz , Alvie A. Astronomo , Gil Nonato Santos , Ryan U. Olivares\",\"doi\":\"10.1016/j.net.2024.07.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since 1988, the Philippines lacked local access to a nuclear facility, creating a significant void in this field of study for Filipinos. However, after a hiatus of 34 years, this gap was addressed with the recent authorization granted to Philippine Research Reactor 1 (PRR-1) Subcritical Assembly for Training, Education, and Research (SATER), allowing it to resume operations. In this work, a PHITS-based computational model was developed for the recently commissioned PRR-1 SATER. The model utilized a simplified model of the Training, Research, Isotope, General Atomics (TRIGA) fuel that releases photons with 0.6617 MeV energy from the Cs-137 fission product in the fuel. Compared to previous works on photon transport mapping, which utilized average source definition, this study employed individually defined fuel intensities and compared them with the averaged source definition for the fuel. The two fuel source definitions showed noticeable differences inside the reactor tank which is relevant for mixed-field irradiation applications of a research reactor. However, defining the fuel rods by their average strength is sufficient for radiation protection purposes. Simulations were also performed for fuel source definitions based on the average and ±1 standard deviation of the gamma intensity. Gamma doses received by cylindrical phantoms positioned at 0.5 m from the surface of the reactor tank for 500 h were found to be 1 % of the radiation dose limits per year and 4 % of the average dose limit for 5 years as stipulated by the Code of Philippine Nuclear Research Institute (PNRI) Regulations. Loss of water accident was also analyzed based on a conservative exposure time of 500 h. This resulted in a dose value that is only 45.5 % of the dose identified as the emergency turnback guidance of the IAEA. Lastly, PHITS calculated values of gamma doses were found to agree well, with 0.98 ratio, when compared with gamma doses measured at specified locations in the reactor. Results of this study confirm the inherent safety of the PRR-1 SATER in terms of radiological shielding for Cs-137 photons.</div></div>\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":\"56 12\",\"pages\":\"Pages 5339-5345\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1738573324003590\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573324003590","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A PHITS based-computational model of a TRIGA-fueled subcritical reactor for gamma dose mapping
Since 1988, the Philippines lacked local access to a nuclear facility, creating a significant void in this field of study for Filipinos. However, after a hiatus of 34 years, this gap was addressed with the recent authorization granted to Philippine Research Reactor 1 (PRR-1) Subcritical Assembly for Training, Education, and Research (SATER), allowing it to resume operations. In this work, a PHITS-based computational model was developed for the recently commissioned PRR-1 SATER. The model utilized a simplified model of the Training, Research, Isotope, General Atomics (TRIGA) fuel that releases photons with 0.6617 MeV energy from the Cs-137 fission product in the fuel. Compared to previous works on photon transport mapping, which utilized average source definition, this study employed individually defined fuel intensities and compared them with the averaged source definition for the fuel. The two fuel source definitions showed noticeable differences inside the reactor tank which is relevant for mixed-field irradiation applications of a research reactor. However, defining the fuel rods by their average strength is sufficient for radiation protection purposes. Simulations were also performed for fuel source definitions based on the average and ±1 standard deviation of the gamma intensity. Gamma doses received by cylindrical phantoms positioned at 0.5 m from the surface of the reactor tank for 500 h were found to be 1 % of the radiation dose limits per year and 4 % of the average dose limit for 5 years as stipulated by the Code of Philippine Nuclear Research Institute (PNRI) Regulations. Loss of water accident was also analyzed based on a conservative exposure time of 500 h. This resulted in a dose value that is only 45.5 % of the dose identified as the emergency turnback guidance of the IAEA. Lastly, PHITS calculated values of gamma doses were found to agree well, with 0.98 ratio, when compared with gamma doses measured at specified locations in the reactor. Results of this study confirm the inherent safety of the PRR-1 SATER in terms of radiological shielding for Cs-137 photons.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development