Pedro Quesado, Luis H M Torres, Bernardete Ribeiro, Joel P Arrais
{"title":"改进分子特性预测的混合 GNN 方法。","authors":"Pedro Quesado, Luis H M Torres, Bernardete Ribeiro, Joel P Arrais","doi":"10.1089/cmb.2023.0452","DOIUrl":null,"url":null,"abstract":"<p><p>The development of new drugs is a vital effort that has the potential to improve human health, well-being and life expectancy. Molecular property prediction is a crucial step in drug discovery, as it helps to identify potential therapeutic compounds. However, experimental methods for drug development can often be time-consuming and resource-intensive, with a low probability of success. To address such limitations, deep learning (DL) methods have emerged as a viable alternative due to their ability to identify high-discriminating patterns in molecular data. In particular, graph neural networks (GNNs) operate on graph-structured data to identify promising drug candidates with desirable molecular properties. These methods represent molecules as a set of node (atoms) and edge (chemical bonds) features to aggregate local information for molecular graph representation learning. Despite the availability of several GNN frameworks, each approach has its own shortcomings. Although, some GNNs may excel in certain tasks, they may not perform as well in others. In this work, we propose a hybrid approach that incorporates different graph-based methods to combine their strengths and mitigate their limitations to accurately predict molecular properties. The proposed approach consists in a multi-layered hybrid GNN architecture that integrates multiple GNN frameworks to compute graph embeddings for molecular property prediction. Furthermore, we conduct extensive experiments on multiple benchmark datasets to demonstrate that our hybrid approach significantly outperforms the state-of-the-art graph-based models. The data and code scripts to reproduce the results are available in the repository, https://github.com/pedro-quesado/HybridGNN.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"1146-1157"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid GNN Approach for Improved Molecular Property Prediction.\",\"authors\":\"Pedro Quesado, Luis H M Torres, Bernardete Ribeiro, Joel P Arrais\",\"doi\":\"10.1089/cmb.2023.0452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of new drugs is a vital effort that has the potential to improve human health, well-being and life expectancy. Molecular property prediction is a crucial step in drug discovery, as it helps to identify potential therapeutic compounds. However, experimental methods for drug development can often be time-consuming and resource-intensive, with a low probability of success. To address such limitations, deep learning (DL) methods have emerged as a viable alternative due to their ability to identify high-discriminating patterns in molecular data. In particular, graph neural networks (GNNs) operate on graph-structured data to identify promising drug candidates with desirable molecular properties. These methods represent molecules as a set of node (atoms) and edge (chemical bonds) features to aggregate local information for molecular graph representation learning. Despite the availability of several GNN frameworks, each approach has its own shortcomings. Although, some GNNs may excel in certain tasks, they may not perform as well in others. In this work, we propose a hybrid approach that incorporates different graph-based methods to combine their strengths and mitigate their limitations to accurately predict molecular properties. The proposed approach consists in a multi-layered hybrid GNN architecture that integrates multiple GNN frameworks to compute graph embeddings for molecular property prediction. Furthermore, we conduct extensive experiments on multiple benchmark datasets to demonstrate that our hybrid approach significantly outperforms the state-of-the-art graph-based models. The data and code scripts to reproduce the results are available in the repository, https://github.com/pedro-quesado/HybridGNN.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"1146-1157\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0452\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0452","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Hybrid GNN Approach for Improved Molecular Property Prediction.
The development of new drugs is a vital effort that has the potential to improve human health, well-being and life expectancy. Molecular property prediction is a crucial step in drug discovery, as it helps to identify potential therapeutic compounds. However, experimental methods for drug development can often be time-consuming and resource-intensive, with a low probability of success. To address such limitations, deep learning (DL) methods have emerged as a viable alternative due to their ability to identify high-discriminating patterns in molecular data. In particular, graph neural networks (GNNs) operate on graph-structured data to identify promising drug candidates with desirable molecular properties. These methods represent molecules as a set of node (atoms) and edge (chemical bonds) features to aggregate local information for molecular graph representation learning. Despite the availability of several GNN frameworks, each approach has its own shortcomings. Although, some GNNs may excel in certain tasks, they may not perform as well in others. In this work, we propose a hybrid approach that incorporates different graph-based methods to combine their strengths and mitigate their limitations to accurately predict molecular properties. The proposed approach consists in a multi-layered hybrid GNN architecture that integrates multiple GNN frameworks to compute graph embeddings for molecular property prediction. Furthermore, we conduct extensive experiments on multiple benchmark datasets to demonstrate that our hybrid approach significantly outperforms the state-of-the-art graph-based models. The data and code scripts to reproduce the results are available in the repository, https://github.com/pedro-quesado/HybridGNN.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases