新型姜黄素类似物(CACN136)体外和体内抗抑郁作用的初步研究

IF 4.6 2区 医学 Q1 NEUROSCIENCES Molecular Neurobiology Pub Date : 2025-02-01 Epub Date: 2024-07-30 DOI:10.1007/s12035-024-04363-6
Jinglin Chen, Yumeng Wei, Nong Li, Chao Pi, Wenmei Zhao, Yueting Zhong, Wen Li, Hongping Shen, Yan Yang, Wenwu Zheng, Jun Jiang, Zerong Liu, Kezhi Liu, Ling Zhao
{"title":"新型姜黄素类似物(CACN136)体外和体内抗抑郁作用的初步研究","authors":"Jinglin Chen, Yumeng Wei, Nong Li, Chao Pi, Wenmei Zhao, Yueting Zhong, Wen Li, Hongping Shen, Yan Yang, Wenwu Zheng, Jun Jiang, Zerong Liu, Kezhi Liu, Ling Zhao","doi":"10.1007/s12035-024-04363-6","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to develop a novel antidepressant with high activity. Based on the findings of molecular docking, eight novel curcumin analogues were evaluated in vitro to check for antidepressant efficacy. Among them, CACN136 had the strongest antidepressant effect. Firstly, CACN136 had a stronger 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical ion scavenging ability (IC<sub>50</sub>: 17.500 ± 0.267 μg/mL) compared to ascorbic acid (IC<sub>50</sub>: 38.858 ± 0.263 μg/mL) and curcumin (27.189 ± 0.192 μg/mL). Secondly, only CACN136 demonstrated clear protective effects on cells damaged by glutamate and oxidative stress at all concentrations. Finally, only CACN136 showed ASP + inhibition and was more effective than fluoxetine hydrochloride (FLU) at low concentrations. To further confirm the antidepressant effect of CACN136 in vivo, the CUMS model was established. Following 28 days of oral administration of CUMS mice, CACN136 increased the central area residence time in the open-field test, significantly increased the sucrose preference rate in the sucrose preference test (P < 0.001) and significantly reduced the immobility period in the tail suspension test (P < 0.0001), all of which were more effective than those of FLU. Subsequent research indicated that the antidepressant properties of CACN136 were linked to a decrease in the metabolism of 5-HT and the modulation of oxidative stress levels in vivo. In particular, the activation of the Keap1-Nrf2/BDNF-TrkB signaling pathway by CACN136 resulted in elevated levels of antioxidant enzymes, enhancing the antioxidant capability in mice subjected to CUMS. In conclusion, CACN136 has the potential to treat depression and could be an effective antidepressant.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"2124-2147"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary Investigation Into the Antidepressant Effects of a Novel Curcumin Analogue (CACN136) In Vitro and In Vivo.\",\"authors\":\"Jinglin Chen, Yumeng Wei, Nong Li, Chao Pi, Wenmei Zhao, Yueting Zhong, Wen Li, Hongping Shen, Yan Yang, Wenwu Zheng, Jun Jiang, Zerong Liu, Kezhi Liu, Ling Zhao\",\"doi\":\"10.1007/s12035-024-04363-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to develop a novel antidepressant with high activity. Based on the findings of molecular docking, eight novel curcumin analogues were evaluated in vitro to check for antidepressant efficacy. Among them, CACN136 had the strongest antidepressant effect. Firstly, CACN136 had a stronger 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical ion scavenging ability (IC<sub>50</sub>: 17.500 ± 0.267 μg/mL) compared to ascorbic acid (IC<sub>50</sub>: 38.858 ± 0.263 μg/mL) and curcumin (27.189 ± 0.192 μg/mL). Secondly, only CACN136 demonstrated clear protective effects on cells damaged by glutamate and oxidative stress at all concentrations. Finally, only CACN136 showed ASP + inhibition and was more effective than fluoxetine hydrochloride (FLU) at low concentrations. To further confirm the antidepressant effect of CACN136 in vivo, the CUMS model was established. Following 28 days of oral administration of CUMS mice, CACN136 increased the central area residence time in the open-field test, significantly increased the sucrose preference rate in the sucrose preference test (P < 0.001) and significantly reduced the immobility period in the tail suspension test (P < 0.0001), all of which were more effective than those of FLU. Subsequent research indicated that the antidepressant properties of CACN136 were linked to a decrease in the metabolism of 5-HT and the modulation of oxidative stress levels in vivo. In particular, the activation of the Keap1-Nrf2/BDNF-TrkB signaling pathway by CACN136 resulted in elevated levels of antioxidant enzymes, enhancing the antioxidant capability in mice subjected to CUMS. In conclusion, CACN136 has the potential to treat depression and could be an effective antidepressant.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"2124-2147\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04363-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04363-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发一种高活性的新型抗抑郁药。根据分子对接的结果,研究人员在体外评估了八种新型姜黄素类似物的抗抑郁功效。其中,CACN136的抗抑郁效果最强。首先,与抗坏血酸(IC50:38.858 ± 0.263 μg/mL)和姜黄素(27.189 ± 0.192 μg/mL)相比,CACN136具有更强的2,2'-偶氮双(3-乙基苯并噻唑啉-6-磺酸)自由基离子清除能力(IC50:17.500 ± 0.267 μg/mL)。其次,在所有浓度下,只有 CACN136 对受到谷氨酸和氧化应激损伤的细胞具有明显的保护作用。最后,只有 CACN136 对 ASP + 有抑制作用,而且在低浓度时比盐酸氟西汀(FLU)更有效。为了进一步证实 CACN136 在体内的抗抑郁作用,我们建立了 CUMS 模型。给 CUMS 小鼠口服 CACN136 28 天后,CUMS 小鼠在开放场试验中的中心区停留时间增加,在蔗糖偏好试验中的蔗糖偏好率显著增加(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary Investigation Into the Antidepressant Effects of a Novel Curcumin Analogue (CACN136) In Vitro and In Vivo.

The aim of this study was to develop a novel antidepressant with high activity. Based on the findings of molecular docking, eight novel curcumin analogues were evaluated in vitro to check for antidepressant efficacy. Among them, CACN136 had the strongest antidepressant effect. Firstly, CACN136 had a stronger 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical ion scavenging ability (IC50: 17.500 ± 0.267 μg/mL) compared to ascorbic acid (IC50: 38.858 ± 0.263 μg/mL) and curcumin (27.189 ± 0.192 μg/mL). Secondly, only CACN136 demonstrated clear protective effects on cells damaged by glutamate and oxidative stress at all concentrations. Finally, only CACN136 showed ASP + inhibition and was more effective than fluoxetine hydrochloride (FLU) at low concentrations. To further confirm the antidepressant effect of CACN136 in vivo, the CUMS model was established. Following 28 days of oral administration of CUMS mice, CACN136 increased the central area residence time in the open-field test, significantly increased the sucrose preference rate in the sucrose preference test (P < 0.001) and significantly reduced the immobility period in the tail suspension test (P < 0.0001), all of which were more effective than those of FLU. Subsequent research indicated that the antidepressant properties of CACN136 were linked to a decrease in the metabolism of 5-HT and the modulation of oxidative stress levels in vivo. In particular, the activation of the Keap1-Nrf2/BDNF-TrkB signaling pathway by CACN136 resulted in elevated levels of antioxidant enzymes, enhancing the antioxidant capability in mice subjected to CUMS. In conclusion, CACN136 has the potential to treat depression and could be an effective antidepressant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
期刊最新文献
PD-Like Pathogenesis in Caenorhabditis elegans Intestinally Infected with Nocardia farcinica and the Underlying Molecular Mechanisms. Single-Cell Cortical Transcriptomics Reveals Common and Distinct Changes in Cell-Cell Communication in Alzheimer's and Parkinson's Disease. Identification of Autophagy-Related Genes in Patients with Acute Spinal Cord Injury and Analysis of Potential Therapeutic Targets. Comparative Neuroprotective Potential of Nanoformulated and Free Resveratrol Against Cuprizone-Induced Demyelination in Rats. Single-Nucleus Landscape of Glial Cells and Neurons in Alzheimer's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1