Tengfei Guo, Anqi Li, Pan Sun, Zhengbo He, Yue Cai, Guoyu Lan, Lin Liu, Jieyin Li, Jie Yang, Yalin Zhu, Ruiyue Zhao, Xuhui Chen, Dai Shi, Zhen Liu, Qingyong Wang, Linsen Xu, Liemin Zhou, Pengcheng Ran, Xinlu Wang, Kun Sun, Jie Lu, Ying Han
{"title":"星形胶质细胞的反应性与阿尔茨海默病的 tau 纠结负荷和皮质变薄有关。","authors":"Tengfei Guo, Anqi Li, Pan Sun, Zhengbo He, Yue Cai, Guoyu Lan, Lin Liu, Jieyin Li, Jie Yang, Yalin Zhu, Ruiyue Zhao, Xuhui Chen, Dai Shi, Zhen Liu, Qingyong Wang, Linsen Xu, Liemin Zhou, Pengcheng Ran, Xinlu Wang, Kun Sun, Jie Lu, Ying Han","doi":"10.1186/s13024-024-00750-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It is not fully established whether plasma β-amyloid(Aβ)<sub>42</sub>/Aβ<sub>40</sub> and phosphorylated Tau<sub>181</sub> (p-Tau<sub>181</sub>) can effectively detect Alzheimer's disease (AD) pathophysiology in older Chinese adults and how these biomarkers correlate with astrocyte reactivity, Aβ plaque deposition, tau tangle aggregation, and neurodegeneration.</p><p><strong>Methods: </strong>We recruited 470 older adults and analyzed plasma Aβ<sub>42</sub>/Aβ<sub>40</sub>, p-Tau<sub>181</sub>, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) using the Simoa platform. Among them, 301, 195, and 70 underwent magnetic resonance imaging, Aβ and tau positron emission tomography imaging. The plasma Aβ<sub>42</sub>/Aβ<sub>40</sub> and p-Tau<sub>181</sub> thresholds were defined as ≤0.0609 and ≥2.418 based on the receiver operating characteristic curve analysis using the Youden index by comparing Aβ-PET negative cognitively unimpaired individuals and Aβ-PET positive cognitively impaired patients. To evaluate the feasibility of using plasma Aβ<sub>42</sub>/Aβ<sub>40</sub> (A) and p-Tau<sub>181</sub> (T) to detect AD and understand how astrocyte reactivity affects this process, we compared plasma GFAP, Aβ plaque, tau tangle, plasma NfL, hippocampal volume, and temporal-metaROI cortical thickness between different plasma A/T profiles and explored their relations with each other using general linear models, including age, sex, APOE-ε4, and diagnosis as covariates.</p><p><strong>Results: </strong>Plasma A+/T + individuals showed the highest levels of astrocyte reactivity, Aβ plaque, tau tangle, and axonal degeneration, and the lowest hippocampal volume and temporal-metaROI cortical thickness. Lower plasma Aβ<sub>42</sub>/Aβ<sub>40</sub> and higher plasma p-Tau<sub>181</sub> were independently and synergistically correlated with higher plasma GFAP and Aβ plaque. Elevated plasma p-Tau<sub>181</sub> and GFAP concentrations were directly and interactively associated with more tau tangle formation. Regarding neurodegeneration, higher plasma p-Tau<sub>181</sub> and GFAP concentrations strongly correlated with more axonal degeneration, as measured by plasma NfL, and lower plasma Aβ<sub>42</sub>/Aβ<sub>40</sub> and higher plasma p-Tau<sub>181</sub> were related to greater hippocampal atrophy. Higher plasma GFAP levels were associated with thinner cortical thickness and significantly interacted with lower plasma Aβ<sub>42</sub>/Aβ<sub>40</sub> and higher plasma p-Tau<sub>181</sub> in predicting more temporal-metaROI cortical thinning. Voxel-wise imaging analysis confirmed these findings.</p><p><strong>Discussion: </strong>This study provides a valuable reference for using plasma biomarkers to detect AD in the Chinese community population and offers novel insights into how astrocyte reactivity contributes to AD progression, highlighting the importance of targeting reactive astrogliosis to prevent AD.</p>","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"19 1","pages":"58"},"PeriodicalIF":14.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290175/pdf/","citationCount":"0","resultStr":"{\"title\":\"Astrocyte reactivity is associated with tau tangle load and cortical thinning in Alzheimer's disease.\",\"authors\":\"Tengfei Guo, Anqi Li, Pan Sun, Zhengbo He, Yue Cai, Guoyu Lan, Lin Liu, Jieyin Li, Jie Yang, Yalin Zhu, Ruiyue Zhao, Xuhui Chen, Dai Shi, Zhen Liu, Qingyong Wang, Linsen Xu, Liemin Zhou, Pengcheng Ran, Xinlu Wang, Kun Sun, Jie Lu, Ying Han\",\"doi\":\"10.1186/s13024-024-00750-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>It is not fully established whether plasma β-amyloid(Aβ)<sub>42</sub>/Aβ<sub>40</sub> and phosphorylated Tau<sub>181</sub> (p-Tau<sub>181</sub>) can effectively detect Alzheimer's disease (AD) pathophysiology in older Chinese adults and how these biomarkers correlate with astrocyte reactivity, Aβ plaque deposition, tau tangle aggregation, and neurodegeneration.</p><p><strong>Methods: </strong>We recruited 470 older adults and analyzed plasma Aβ<sub>42</sub>/Aβ<sub>40</sub>, p-Tau<sub>181</sub>, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) using the Simoa platform. Among them, 301, 195, and 70 underwent magnetic resonance imaging, Aβ and tau positron emission tomography imaging. The plasma Aβ<sub>42</sub>/Aβ<sub>40</sub> and p-Tau<sub>181</sub> thresholds were defined as ≤0.0609 and ≥2.418 based on the receiver operating characteristic curve analysis using the Youden index by comparing Aβ-PET negative cognitively unimpaired individuals and Aβ-PET positive cognitively impaired patients. To evaluate the feasibility of using plasma Aβ<sub>42</sub>/Aβ<sub>40</sub> (A) and p-Tau<sub>181</sub> (T) to detect AD and understand how astrocyte reactivity affects this process, we compared plasma GFAP, Aβ plaque, tau tangle, plasma NfL, hippocampal volume, and temporal-metaROI cortical thickness between different plasma A/T profiles and explored their relations with each other using general linear models, including age, sex, APOE-ε4, and diagnosis as covariates.</p><p><strong>Results: </strong>Plasma A+/T + individuals showed the highest levels of astrocyte reactivity, Aβ plaque, tau tangle, and axonal degeneration, and the lowest hippocampal volume and temporal-metaROI cortical thickness. Lower plasma Aβ<sub>42</sub>/Aβ<sub>40</sub> and higher plasma p-Tau<sub>181</sub> were independently and synergistically correlated with higher plasma GFAP and Aβ plaque. Elevated plasma p-Tau<sub>181</sub> and GFAP concentrations were directly and interactively associated with more tau tangle formation. Regarding neurodegeneration, higher plasma p-Tau<sub>181</sub> and GFAP concentrations strongly correlated with more axonal degeneration, as measured by plasma NfL, and lower plasma Aβ<sub>42</sub>/Aβ<sub>40</sub> and higher plasma p-Tau<sub>181</sub> were related to greater hippocampal atrophy. Higher plasma GFAP levels were associated with thinner cortical thickness and significantly interacted with lower plasma Aβ<sub>42</sub>/Aβ<sub>40</sub> and higher plasma p-Tau<sub>181</sub> in predicting more temporal-metaROI cortical thinning. Voxel-wise imaging analysis confirmed these findings.</p><p><strong>Discussion: </strong>This study provides a valuable reference for using plasma biomarkers to detect AD in the Chinese community population and offers novel insights into how astrocyte reactivity contributes to AD progression, highlighting the importance of targeting reactive astrogliosis to prevent AD.</p>\",\"PeriodicalId\":18800,\"journal\":{\"name\":\"Molecular Neurodegeneration\",\"volume\":\"19 1\",\"pages\":\"58\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13024-024-00750-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13024-024-00750-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Astrocyte reactivity is associated with tau tangle load and cortical thinning in Alzheimer's disease.
Background: It is not fully established whether plasma β-amyloid(Aβ)42/Aβ40 and phosphorylated Tau181 (p-Tau181) can effectively detect Alzheimer's disease (AD) pathophysiology in older Chinese adults and how these biomarkers correlate with astrocyte reactivity, Aβ plaque deposition, tau tangle aggregation, and neurodegeneration.
Methods: We recruited 470 older adults and analyzed plasma Aβ42/Aβ40, p-Tau181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) using the Simoa platform. Among them, 301, 195, and 70 underwent magnetic resonance imaging, Aβ and tau positron emission tomography imaging. The plasma Aβ42/Aβ40 and p-Tau181 thresholds were defined as ≤0.0609 and ≥2.418 based on the receiver operating characteristic curve analysis using the Youden index by comparing Aβ-PET negative cognitively unimpaired individuals and Aβ-PET positive cognitively impaired patients. To evaluate the feasibility of using plasma Aβ42/Aβ40 (A) and p-Tau181 (T) to detect AD and understand how astrocyte reactivity affects this process, we compared plasma GFAP, Aβ plaque, tau tangle, plasma NfL, hippocampal volume, and temporal-metaROI cortical thickness between different plasma A/T profiles and explored their relations with each other using general linear models, including age, sex, APOE-ε4, and diagnosis as covariates.
Results: Plasma A+/T + individuals showed the highest levels of astrocyte reactivity, Aβ plaque, tau tangle, and axonal degeneration, and the lowest hippocampal volume and temporal-metaROI cortical thickness. Lower plasma Aβ42/Aβ40 and higher plasma p-Tau181 were independently and synergistically correlated with higher plasma GFAP and Aβ plaque. Elevated plasma p-Tau181 and GFAP concentrations were directly and interactively associated with more tau tangle formation. Regarding neurodegeneration, higher plasma p-Tau181 and GFAP concentrations strongly correlated with more axonal degeneration, as measured by plasma NfL, and lower plasma Aβ42/Aβ40 and higher plasma p-Tau181 were related to greater hippocampal atrophy. Higher plasma GFAP levels were associated with thinner cortical thickness and significantly interacted with lower plasma Aβ42/Aβ40 and higher plasma p-Tau181 in predicting more temporal-metaROI cortical thinning. Voxel-wise imaging analysis confirmed these findings.
Discussion: This study provides a valuable reference for using plasma biomarkers to detect AD in the Chinese community population and offers novel insights into how astrocyte reactivity contributes to AD progression, highlighting the importance of targeting reactive astrogliosis to prevent AD.
期刊介绍:
Molecular Neurodegeneration, an open-access, peer-reviewed journal, comprehensively covers neurodegeneration research at the molecular and cellular levels.
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, fall under its purview. These disorders, often linked to advanced aging and characterized by varying degrees of dementia, pose a significant public health concern with the growing aging population. Recent strides in understanding the molecular and cellular mechanisms of these neurodegenerative disorders offer valuable insights into their pathogenesis.