Bacttle:面向普通公众和学校的微生物教育棋盘游戏。

IF 1.6 Q2 EDUCATION, SCIENTIFIC DISCIPLINES Journal of Microbiology & Biology Education Pub Date : 2024-08-29 Epub Date: 2024-07-31 DOI:10.1128/jmbe.00097-24
Tania Miguel Trabajo, Eavan Dorcey, Jan Roelof van der Meer
{"title":"Bacttle:面向普通公众和学校的微生物教育棋盘游戏。","authors":"Tania Miguel Trabajo, Eavan Dorcey, Jan Roelof van der Meer","doi":"10.1128/jmbe.00097-24","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by the positive impact of serious games on science understanding and motivated by personal interests in scientific outreach, we developed \"Bacttle,\" an easy-to-play microbiology board game with adaptive difficulty, targeting any player from 7 years old onward. Bacttle addresses both the lay public and teachers for use in classrooms as a way of introducing microbiology concepts. The layout of the game and its mechanism are the result of multiple rounds of trial, feedback, and re-design. The final version consists of a deck of cards, a 3D-printed board, and tokens (with a paper-based alternative), with all digital content open source. Players in Bacttle take on the character of a bacterial species. The aim for each species is to proliferate under the environmental conditions of the board and the interactions with the board and with other players, which vary as the play evolves. Players start with a given number of lives that will increase or decrease based on the traits they play for different environmental scenarios. Such bacterial traits come in the form of cards that can be deployed strategically. To assess the impact of the game on microbiological knowledge, we scored differences in the understanding of general concepts before and after playing the game. We assessed a total of 169 visitors at two different university open-day science fairs. Players were asked to fill out a brief survey before and after the game with questions targeting conceptual advances. Results show that Bacttle increases general microbiology knowledge on players as young as 5 years old and with the highest impact on those who have no <i>a priori</i> microbiology comprehension.</p>","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360538/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bacttle: a microbiology educational board game for lay public and schools.\",\"authors\":\"Tania Miguel Trabajo, Eavan Dorcey, Jan Roelof van der Meer\",\"doi\":\"10.1128/jmbe.00097-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inspired by the positive impact of serious games on science understanding and motivated by personal interests in scientific outreach, we developed \\\"Bacttle,\\\" an easy-to-play microbiology board game with adaptive difficulty, targeting any player from 7 years old onward. Bacttle addresses both the lay public and teachers for use in classrooms as a way of introducing microbiology concepts. The layout of the game and its mechanism are the result of multiple rounds of trial, feedback, and re-design. The final version consists of a deck of cards, a 3D-printed board, and tokens (with a paper-based alternative), with all digital content open source. Players in Bacttle take on the character of a bacterial species. The aim for each species is to proliferate under the environmental conditions of the board and the interactions with the board and with other players, which vary as the play evolves. Players start with a given number of lives that will increase or decrease based on the traits they play for different environmental scenarios. Such bacterial traits come in the form of cards that can be deployed strategically. To assess the impact of the game on microbiological knowledge, we scored differences in the understanding of general concepts before and after playing the game. We assessed a total of 169 visitors at two different university open-day science fairs. Players were asked to fill out a brief survey before and after the game with questions targeting conceptual advances. Results show that Bacttle increases general microbiology knowledge on players as young as 5 years old and with the highest impact on those who have no <i>a priori</i> microbiology comprehension.</p>\",\"PeriodicalId\":46416,\"journal\":{\"name\":\"Journal of Microbiology & Biology Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microbiology & Biology Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/jmbe.00097-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology & Biology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/jmbe.00097-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

受到严肃游戏对科学理解产生的积极影响的启发,并出于对科学推广的个人兴趣,我们开发了 "Bacttle",这是一款简单易玩的微生物学棋盘游戏,难度自适应,适合 7 岁以上的任何玩家。Bacttle 既面向普通大众,也面向教师,是一种在课堂上介绍微生物学概念的方法。游戏的布局和机制是多轮试验、反馈和重新设计的结果。最终版本由一副扑克牌、3D 打印的棋盘和代币(纸质替代品)组成,所有数字内容均开源。玩家在 Bacttle 中扮演一个细菌物种。每个物种的目标都是在棋盘的环境条件下增殖,并与棋盘和其他玩家互动。玩家一开始会有一定数量的生命,这些生命会根据玩家在不同环境下发挥的特性而增减。这些细菌特性以卡片的形式出现,可以进行战略部署。为了评估游戏对微生物知识的影响,我们对玩游戏前后对一般概念的理解差异进行了评分。我们在两个不同的大学开放日科学展上对总共 169 名参观者进行了评估。玩家需要在游戏前后填写一份简短的调查问卷,其中包含针对概念进展的问题。结果表明,Bacttle 增加了年仅 5 岁的玩家的微生物学常识,对那些没有先验微生物学理解能力的玩家影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bacttle: a microbiology educational board game for lay public and schools.

Inspired by the positive impact of serious games on science understanding and motivated by personal interests in scientific outreach, we developed "Bacttle," an easy-to-play microbiology board game with adaptive difficulty, targeting any player from 7 years old onward. Bacttle addresses both the lay public and teachers for use in classrooms as a way of introducing microbiology concepts. The layout of the game and its mechanism are the result of multiple rounds of trial, feedback, and re-design. The final version consists of a deck of cards, a 3D-printed board, and tokens (with a paper-based alternative), with all digital content open source. Players in Bacttle take on the character of a bacterial species. The aim for each species is to proliferate under the environmental conditions of the board and the interactions with the board and with other players, which vary as the play evolves. Players start with a given number of lives that will increase or decrease based on the traits they play for different environmental scenarios. Such bacterial traits come in the form of cards that can be deployed strategically. To assess the impact of the game on microbiological knowledge, we scored differences in the understanding of general concepts before and after playing the game. We assessed a total of 169 visitors at two different university open-day science fairs. Players were asked to fill out a brief survey before and after the game with questions targeting conceptual advances. Results show that Bacttle increases general microbiology knowledge on players as young as 5 years old and with the highest impact on those who have no a priori microbiology comprehension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microbiology & Biology Education
Journal of Microbiology & Biology Education EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
3.00
自引率
26.30%
发文量
95
审稿时长
22 weeks
期刊最新文献
A modular activity to support knowledge retention, application, and metacognition in undergraduate immunology. Beyond boundaries: exploring a generative artificial intelligence assignment in graduate, online science courses. A framework for training graduate students and campus communities in inclusive teaching. Student-led discussions of landmark discovery articles: a foothold in teaching primary virology literature. Addressing the need to facilitate undergraduate research experiences for community college transfer students in science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1