一种人工智能 Holter 算法,通过分析窦性心律时的心电图来识别室性心动过速患者。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS European heart journal. Digital health Pub Date : 2024-04-03 eCollection Date: 2024-07-01 DOI:10.1093/ehjdh/ztae025
Sheina Gendelman, Eran Zvuloni, Julien Oster, Mahmoud Suleiman, Raphaël Derman, Joachim A Behar
{"title":"一种人工智能 Holter 算法,通过分析窦性心律时的心电图来识别室性心动过速患者。","authors":"Sheina Gendelman, Eran Zvuloni, Julien Oster, Mahmoud Suleiman, Raphaël Derman, Joachim A Behar","doi":"10.1093/ehjdh/ztae025","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Ventricular tachycardia (VT) is a dangerous cardiac arrhythmia that can lead to sudden cardiac death. Early detection and management of VT is thus of high clinical importance. We hypothesize that it is possible to identify patients with VT during sinus rhythm by leveraging a continuous 24 h Holter electrocardiogram and artificial intelligence.</p><p><strong>Methods and results: </strong>We analysed a retrospective Holter data set from the Rambam Health Care Campus, Haifa, Israel, which included 1773 Holter recordings from 1570 non-VT patients and 52 recordings from 49 VT patients. Morphological and heart rate variability features were engineered from the raw electrocardiogram signal and fed, together with demographical features, to a data-driven model for the task of classifying a patient as either VT or non-VT. The model obtained an area under the receiving operative curve of 0.76 ± 0.07. Feature importance suggested that the proportion of premature ventricular beats and beat-to-beat interval variability was discriminative of VT, while demographic features were not.</p><p><strong>Conclusion: </strong>This original study demonstrates the feasibility of VT identification from sinus rhythm in Holter.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"5 4","pages":"409-415"},"PeriodicalIF":3.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284005/pdf/","citationCount":"0","resultStr":"{\"title\":\"An artificial intelligence-enabled Holter algorithm to identify patients with ventricular tachycardia by analysing their electrocardiogram during sinus rhythm.\",\"authors\":\"Sheina Gendelman, Eran Zvuloni, Julien Oster, Mahmoud Suleiman, Raphaël Derman, Joachim A Behar\",\"doi\":\"10.1093/ehjdh/ztae025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Ventricular tachycardia (VT) is a dangerous cardiac arrhythmia that can lead to sudden cardiac death. Early detection and management of VT is thus of high clinical importance. We hypothesize that it is possible to identify patients with VT during sinus rhythm by leveraging a continuous 24 h Holter electrocardiogram and artificial intelligence.</p><p><strong>Methods and results: </strong>We analysed a retrospective Holter data set from the Rambam Health Care Campus, Haifa, Israel, which included 1773 Holter recordings from 1570 non-VT patients and 52 recordings from 49 VT patients. Morphological and heart rate variability features were engineered from the raw electrocardiogram signal and fed, together with demographical features, to a data-driven model for the task of classifying a patient as either VT or non-VT. The model obtained an area under the receiving operative curve of 0.76 ± 0.07. Feature importance suggested that the proportion of premature ventricular beats and beat-to-beat interval variability was discriminative of VT, while demographic features were not.</p><p><strong>Conclusion: </strong>This original study demonstrates the feasibility of VT identification from sinus rhythm in Holter.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"5 4\",\"pages\":\"409-415\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztae025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:室性心动过速(VT)是一种危险的心律失常,可导致心脏性猝死。因此,早期发现和处理室性心动过速具有重要的临床意义。我们假设,利用连续 24 小时的 Holter 心电图和人工智能,有可能在窦性心律期间识别出 VT 患者:我们分析了以色列海法兰巴姆医疗保健中心的 Holter 回顾性数据集,其中包括 1570 名非 VT 患者的 1773 次 Holter 记录和 49 名 VT 患者的 52 次记录。从原始心电图信号中提取了形态学特征和心率变异性特征,并与人口统计学特征一起输入数据驱动模型,用于将患者分类为 VT 或非 VT。该模型的接收操作曲线下面积为 0.76 ± 0.07。特征重要性表明,室性早搏的比例和搏动间期变异性对 VT 有鉴别作用,而人口统计学特征则没有:这项原创性研究证明了从 Holter 中的窦性心律识别 VT 的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An artificial intelligence-enabled Holter algorithm to identify patients with ventricular tachycardia by analysing their electrocardiogram during sinus rhythm.

Aims: Ventricular tachycardia (VT) is a dangerous cardiac arrhythmia that can lead to sudden cardiac death. Early detection and management of VT is thus of high clinical importance. We hypothesize that it is possible to identify patients with VT during sinus rhythm by leveraging a continuous 24 h Holter electrocardiogram and artificial intelligence.

Methods and results: We analysed a retrospective Holter data set from the Rambam Health Care Campus, Haifa, Israel, which included 1773 Holter recordings from 1570 non-VT patients and 52 recordings from 49 VT patients. Morphological and heart rate variability features were engineered from the raw electrocardiogram signal and fed, together with demographical features, to a data-driven model for the task of classifying a patient as either VT or non-VT. The model obtained an area under the receiving operative curve of 0.76 ± 0.07. Feature importance suggested that the proportion of premature ventricular beats and beat-to-beat interval variability was discriminative of VT, while demographic features were not.

Conclusion: This original study demonstrates the feasibility of VT identification from sinus rhythm in Holter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
期刊最新文献
Introducing online multi-language video animations to support patients' understanding of cardiac procedures in a high-volume tertiary centre. Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome. Validation of machine learning-based risk stratification scores for patients with acute coronary syndrome treated with percutaneous coronary intervention. On the detection of acute coronary occlusion with the miniECG. Cardiac anatomic digital twins: findings from a single national centre.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1