Mariano Tomás Fernandez, Sergio Zlotnik, Pedro Diez
{"title":"基于等温线参数化位置的地球物理反演物理上一致的温度场","authors":"Mariano Tomás Fernandez, Sergio Zlotnik, Pedro Diez","doi":"10.1108/hff-10-2023-0649","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to provide a method for obtaining physically sound temperature fields to be used in geophysical inversions in the presence of immersed essential conditions.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The method produces a thermal field in agreement with a given location of the interface between the Lithosphere and Asthenosphere. It leverages the known location of the interface to enforce the location of a given isotherm while relaxing other constraints known with less precision. The method splits the domain: in the Lithosphere the solution is immediately obtained by standard procedures, while in the Asthenosphere a minimization problem is solved to fulfill continuity of temperatures (strongly imposed) and fluxes at the interface (weakly imposed).</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The numerical methodology, based on the relaxation of the bottom fluxes, correctly recovers the thermal field in the complete domain. To obtain bottom fluxes following geophysical expected values, a constrained minimization strategy is required. The sensitivity of the method could be improved by relaxing other quantities such as lateral fluxes or mantle velocities.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>A statement of the energy balance problem in terms of a known immersed condition is presented. A novel numerical procedure based on a domain-splitting strategy allows the solution of the problem. The procedure is tailored to be used within geophysical inversions and provides physically sound solutions.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"72 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physically consistent temperature fields for geophysical inversion based on the parametrized location of an isotherm\",\"authors\":\"Mariano Tomás Fernandez, Sergio Zlotnik, Pedro Diez\",\"doi\":\"10.1108/hff-10-2023-0649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper aims to provide a method for obtaining physically sound temperature fields to be used in geophysical inversions in the presence of immersed essential conditions.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The method produces a thermal field in agreement with a given location of the interface between the Lithosphere and Asthenosphere. It leverages the known location of the interface to enforce the location of a given isotherm while relaxing other constraints known with less precision. The method splits the domain: in the Lithosphere the solution is immediately obtained by standard procedures, while in the Asthenosphere a minimization problem is solved to fulfill continuity of temperatures (strongly imposed) and fluxes at the interface (weakly imposed).</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The numerical methodology, based on the relaxation of the bottom fluxes, correctly recovers the thermal field in the complete domain. To obtain bottom fluxes following geophysical expected values, a constrained minimization strategy is required. The sensitivity of the method could be improved by relaxing other quantities such as lateral fluxes or mantle velocities.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>A statement of the energy balance problem in terms of a known immersed condition is presented. A novel numerical procedure based on a domain-splitting strategy allows the solution of the problem. The procedure is tailored to be used within geophysical inversions and provides physically sound solutions.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-10-2023-0649\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-10-2023-0649","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Physically consistent temperature fields for geophysical inversion based on the parametrized location of an isotherm
Purpose
This paper aims to provide a method for obtaining physically sound temperature fields to be used in geophysical inversions in the presence of immersed essential conditions.
Design/methodology/approach
The method produces a thermal field in agreement with a given location of the interface between the Lithosphere and Asthenosphere. It leverages the known location of the interface to enforce the location of a given isotherm while relaxing other constraints known with less precision. The method splits the domain: in the Lithosphere the solution is immediately obtained by standard procedures, while in the Asthenosphere a minimization problem is solved to fulfill continuity of temperatures (strongly imposed) and fluxes at the interface (weakly imposed).
Findings
The numerical methodology, based on the relaxation of the bottom fluxes, correctly recovers the thermal field in the complete domain. To obtain bottom fluxes following geophysical expected values, a constrained minimization strategy is required. The sensitivity of the method could be improved by relaxing other quantities such as lateral fluxes or mantle velocities.
Originality/value
A statement of the energy balance problem in terms of a known immersed condition is presented. A novel numerical procedure based on a domain-splitting strategy allows the solution of the problem. The procedure is tailored to be used within geophysical inversions and provides physically sound solutions.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf