Omkar Thawakar, Sanath Narayan, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, Jorma Laaksonen, Mubarak Shah, Fahad Shahbaz Khan
{"title":"开放世界中的视频实例分割","authors":"Omkar Thawakar, Sanath Narayan, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, Jorma Laaksonen, Mubarak Shah, Fahad Shahbaz Khan","doi":"10.1007/s11263-024-02195-4","DOIUrl":null,"url":null,"abstract":"<p>Existing video instance segmentation (VIS) approaches generally follow a closed-world assumption, where only seen category instances are identified and spatio-temporally segmented at inference. Open-world formulation relaxes the close-world static-learning assumption as follows: (a) first, it distinguishes a set of known categories as well as labels an unknown object as ‘unknown’ and then (b) it incrementally learns the class of an unknown as and when the corresponding semantic labels become available. We propose the first open-world VIS approach, named OW-VISFormer, that introduces a novel feature enrichment mechanism and a spatio-temporal objectness (STO) module. The feature enrichment mechanism based on a light-weight auxiliary network aims at accurate pixel-level (unknown) object delineation from the background as well as distinguishing category-specific known semantic classes. The STO module strives to generate instance-level pseudo-labels by enhancing the foreground activations through a contrastive loss. Moreover, we also introduce an extensive experimental protocol to measure the characteristics of OW-VIS. Our OW-VISFormer performs favorably against a solid baseline in OW-VIS setting. Further, we evaluate our contributions in the standard fully-supervised VIS setting by integrating them into the recent SeqFormer, achieving an absolute gain of 1.6% AP on Youtube-VIS 2019 val. set. Lastly, we show the generalizability of our contributions for the open-world detection (OWOD) setting, outperforming the best existing OWOD method in the literature. Code, models along with OW-VIS splits are available at https://github.com/OmkarThawakar/OWVISFormer.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"10 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video Instance Segmentation in an Open-World\",\"authors\":\"Omkar Thawakar, Sanath Narayan, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, Jorma Laaksonen, Mubarak Shah, Fahad Shahbaz Khan\",\"doi\":\"10.1007/s11263-024-02195-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing video instance segmentation (VIS) approaches generally follow a closed-world assumption, where only seen category instances are identified and spatio-temporally segmented at inference. Open-world formulation relaxes the close-world static-learning assumption as follows: (a) first, it distinguishes a set of known categories as well as labels an unknown object as ‘unknown’ and then (b) it incrementally learns the class of an unknown as and when the corresponding semantic labels become available. We propose the first open-world VIS approach, named OW-VISFormer, that introduces a novel feature enrichment mechanism and a spatio-temporal objectness (STO) module. The feature enrichment mechanism based on a light-weight auxiliary network aims at accurate pixel-level (unknown) object delineation from the background as well as distinguishing category-specific known semantic classes. The STO module strives to generate instance-level pseudo-labels by enhancing the foreground activations through a contrastive loss. Moreover, we also introduce an extensive experimental protocol to measure the characteristics of OW-VIS. Our OW-VISFormer performs favorably against a solid baseline in OW-VIS setting. Further, we evaluate our contributions in the standard fully-supervised VIS setting by integrating them into the recent SeqFormer, achieving an absolute gain of 1.6% AP on Youtube-VIS 2019 val. set. Lastly, we show the generalizability of our contributions for the open-world detection (OWOD) setting, outperforming the best existing OWOD method in the literature. Code, models along with OW-VIS splits are available at https://github.com/OmkarThawakar/OWVISFormer.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02195-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02195-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
现有的视频实例分割(VIS)方法一般都遵循封闭世界假设,即在推理时只对看到的类别实例进行识别和时空分割。开放世界方案放宽了封闭世界静态学习假设,具体如下:(a) 首先,它区分一组已知类别,并将未知对象标记为 "未知",然后(b) 当相应的语义标签可用时,它逐步学习未知对象的类别。我们提出了第一种名为 OW-VISFormer 的开放世界 VIS 方法,它引入了一种新颖的特征丰富机制和一个时空对象性(STO)模块。基于轻量级辅助网络的特征丰富机制旨在从背景中准确划分像素级(未知)对象,并区分特定类别的已知语义类别。STO 模块通过对比损失来增强前景激活,从而生成实例级伪标签。此外,我们还引入了一个广泛的实验方案来测量 OW-VIS 的特性。在 OW-VIS 设置中,我们的 OW-VISFormer 与可靠的基线相比表现出色。此外,我们还评估了我们在标准全监督 VIS 设置中的贡献,将其集成到最新的 SeqFormer 中,在 Youtube-VIS 2019 val. 集上实现了 1.6% AP 的绝对增益。最后,我们展示了我们的贡献对于开放世界检测(OWOD)设置的通用性,其性能优于文献中现有的最佳 OWOD 方法。代码、模型以及 OW-VIS 拆分可在 https://github.com/OmkarThawakar/OWVISFormer 上获取。
Existing video instance segmentation (VIS) approaches generally follow a closed-world assumption, where only seen category instances are identified and spatio-temporally segmented at inference. Open-world formulation relaxes the close-world static-learning assumption as follows: (a) first, it distinguishes a set of known categories as well as labels an unknown object as ‘unknown’ and then (b) it incrementally learns the class of an unknown as and when the corresponding semantic labels become available. We propose the first open-world VIS approach, named OW-VISFormer, that introduces a novel feature enrichment mechanism and a spatio-temporal objectness (STO) module. The feature enrichment mechanism based on a light-weight auxiliary network aims at accurate pixel-level (unknown) object delineation from the background as well as distinguishing category-specific known semantic classes. The STO module strives to generate instance-level pseudo-labels by enhancing the foreground activations through a contrastive loss. Moreover, we also introduce an extensive experimental protocol to measure the characteristics of OW-VIS. Our OW-VISFormer performs favorably against a solid baseline in OW-VIS setting. Further, we evaluate our contributions in the standard fully-supervised VIS setting by integrating them into the recent SeqFormer, achieving an absolute gain of 1.6% AP on Youtube-VIS 2019 val. set. Lastly, we show the generalizability of our contributions for the open-world detection (OWOD) setting, outperforming the best existing OWOD method in the literature. Code, models along with OW-VIS splits are available at https://github.com/OmkarThawakar/OWVISFormer.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.