离子与配体的比例对镧系元素配体水溶液与有机物相对溶解度的影响。

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2024-07-29 DOI:10.1039/D4CP02586E
Thomas J. Summers, Jesus Diaz Sanchez and David C. Cantu
{"title":"离子与配体的比例对镧系元素配体水溶液与有机物相对溶解度的影响。","authors":"Thomas J. Summers, Jesus Diaz Sanchez and David C. Cantu","doi":"10.1039/D4CP02586E","DOIUrl":null,"url":null,"abstract":"<p >In the solvent extraction of rare earth elements, mechanistic aspects remain unclear regarding where and how extractant molecules coordinate metal ions and transport them from the aqueous phase into the organic phase. Molecular dynamics simulations were used to examine how unprotonated di(2-ethylhexyl)phosphoric acid (DEHP<small><sup>−</sup></small>) ligands that coordinate the Gd<small><sup>3+</sup></small> ion can transfer the ion across the water–organic interface. Using the umbrella sampling technique, potential of mean force profiles were constructed to quantify the relative solubility of the Gd<small><sup>3+</sup></small> ion coordinated to 0–3 DEHP<small><sup>−</sup></small> ligands in either water, 1-octanol, or hexane solvents and at the water–organic interfaces. The simulations show the Gd–DEHP<small><sup>−</sup></small> complexes, at varying Ln–ligand ratios, preferentially solvate on water–organic interfaces. While the Gd(DEHP<small><sup>−</sup></small>)<small><sub>3</sub></small> complex will diffuse past the aqueous–organic interface into the octanol solvent, it is thermodynamically preferred for the Gd(DEHP<small><sup>−</sup></small>)<small><sub>3</sub></small> complex to remain in the water–hexane interface when there is no amphiphilic layer of excess ligand.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cp/d4cp02586e?page=search","citationCount":"0","resultStr":"{\"title\":\"Effect of ion to ligand ratio on the aqueous to organic relative solubility of a lanthanide–ligand complex†\",\"authors\":\"Thomas J. Summers, Jesus Diaz Sanchez and David C. Cantu\",\"doi\":\"10.1039/D4CP02586E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the solvent extraction of rare earth elements, mechanistic aspects remain unclear regarding where and how extractant molecules coordinate metal ions and transport them from the aqueous phase into the organic phase. Molecular dynamics simulations were used to examine how unprotonated di(2-ethylhexyl)phosphoric acid (DEHP<small><sup>−</sup></small>) ligands that coordinate the Gd<small><sup>3+</sup></small> ion can transfer the ion across the water–organic interface. Using the umbrella sampling technique, potential of mean force profiles were constructed to quantify the relative solubility of the Gd<small><sup>3+</sup></small> ion coordinated to 0–3 DEHP<small><sup>−</sup></small> ligands in either water, 1-octanol, or hexane solvents and at the water–organic interfaces. The simulations show the Gd–DEHP<small><sup>−</sup></small> complexes, at varying Ln–ligand ratios, preferentially solvate on water–organic interfaces. While the Gd(DEHP<small><sup>−</sup></small>)<small><sub>3</sub></small> complex will diffuse past the aqueous–organic interface into the octanol solvent, it is thermodynamically preferred for the Gd(DEHP<small><sup>−</sup></small>)<small><sub>3</sub></small> complex to remain in the water–hexane interface when there is no amphiphilic layer of excess ligand.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/cp/d4cp02586e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02586e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02586e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在溶剂萃取稀土元素的过程中,关于萃取剂分子在何处以及如何配位金属离子并将其从水相传输到有机相的机理仍不清楚。我们利用分子动力学模拟研究了未质子化的二(2-乙基己基)磷酸(DEHP-)配体如何配位 Gd3+ 离子并将其从水有机界面转移到有机相。利用伞状采样技术,构建了平均力势曲线,以量化与 0-3 DEHP- 配体配位的 Gd3+ 离子在水、1-辛醇或正己烷溶剂中以及在水-有机界面上的相对溶解度。模拟结果表明,在不同的 Ln 配体比率下,Gd-DEHP- 复合物优先溶解在水-有机界面上。虽然 Gd(DEHP-)3 复合物会穿过水-有机界面扩散到辛醇溶剂中,但当没有多余配体的两性层时,热力学上 Gd(DEHP-)3 复合物更倾向于留在水-己烷界面上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of ion to ligand ratio on the aqueous to organic relative solubility of a lanthanide–ligand complex†

In the solvent extraction of rare earth elements, mechanistic aspects remain unclear regarding where and how extractant molecules coordinate metal ions and transport them from the aqueous phase into the organic phase. Molecular dynamics simulations were used to examine how unprotonated di(2-ethylhexyl)phosphoric acid (DEHP) ligands that coordinate the Gd3+ ion can transfer the ion across the water–organic interface. Using the umbrella sampling technique, potential of mean force profiles were constructed to quantify the relative solubility of the Gd3+ ion coordinated to 0–3 DEHP ligands in either water, 1-octanol, or hexane solvents and at the water–organic interfaces. The simulations show the Gd–DEHP complexes, at varying Ln–ligand ratios, preferentially solvate on water–organic interfaces. While the Gd(DEHP)3 complex will diffuse past the aqueous–organic interface into the octanol solvent, it is thermodynamically preferred for the Gd(DEHP)3 complex to remain in the water–hexane interface when there is no amphiphilic layer of excess ligand.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Machine Learning Accelerating Structure Prediction of PtSnO Nanoclusters under Working Conditions Extending the Chevrel-type superatoms to nitrogen family An In-Depth Investigation of Lead-FreeKGeCl3Perovskite Solar Cells Employing Optoelectronic, Thermomechanical and Photovoltaic Properties: DFT and SCAPS-1D Frameworks The effect of hydrogen bonding on the π depletion and the π − π stacking interaction Participation of Transition Metal Atoms in Noncovalent Bonds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1