伊拉克患者 ACE2 受体及其多态性在 COVID-19 感染和严重程度中的作用及其与血脂概况、凝血酶和 D-Dimer 水平的关系:一项横断面研究

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Genetics Pub Date : 2024-07-31 DOI:10.1007/s10528-024-10890-7
Ban Adnan Hatem, Ferdous A Jabir
{"title":"伊拉克患者 ACE2 受体及其多态性在 COVID-19 感染和严重程度中的作用及其与血脂概况、凝血酶和 D-Dimer 水平的关系:一项横断面研究","authors":"Ban Adnan Hatem, Ferdous A Jabir","doi":"10.1007/s10528-024-10890-7","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 patients experience a complex interplay involving ACE2, thrombin, D-dimer, and lipid profile, yet its full understanding remains elusive. ACE2, a pivotal regulator of the renin-angiotensin system and the primary receptor for SARS-CoV-2 undergoes downregulation upon viral binding, potentially leading to severe cases with acute respiratory distress syndrome (ARDS). A specific ACE2 gene polymorphism (rs2285666) may be associated with COVID-19 susceptibility, with the A allele potentially increasing infection risk. COVID-19 disease progression is linked to coagulation abnormalities, but the exact connection with thrombin and D-dimer remains uncertain. A study examining coagulation parameters in COVID-19 patients admitted to Al-Diwania Educational Hospital from February to May 2022 found that thrombin and D-dimer levels were directly related to disease severity. Severe cases exhibited significantly altered coagulation function compared to mild and recovered cases, with notably higher D-dimer levels and elevated thrombin serum concentrations. Moreover, dyslipidemia, particularly low HDL cholesterol, is a prevalent comorbidity in COVID-19 patients and may be linked to worse outcomes. In conclusion, COVID-19 is associated with a prothrombotic state and dysregulation of the renin-angiotensin system due to ACE2 downregulation following viral binding. The intricate interplay between ACE2, thrombin, D-dimer, and lipid profile necessitates further investigation. The multifaceted nature of the disease demands continued research to unravel its pathogenesis and identify potential therapeutic targets.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of ACE2 Receptor and Its Polymorphisms in COVID-19 Infection and Severity and Its Association with Lipid Profile, Thrombin, and D-Dimer Levels in Iraqi Patients: A Cross-Sectional Study.\",\"authors\":\"Ban Adnan Hatem, Ferdous A Jabir\",\"doi\":\"10.1007/s10528-024-10890-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>COVID-19 patients experience a complex interplay involving ACE2, thrombin, D-dimer, and lipid profile, yet its full understanding remains elusive. ACE2, a pivotal regulator of the renin-angiotensin system and the primary receptor for SARS-CoV-2 undergoes downregulation upon viral binding, potentially leading to severe cases with acute respiratory distress syndrome (ARDS). A specific ACE2 gene polymorphism (rs2285666) may be associated with COVID-19 susceptibility, with the A allele potentially increasing infection risk. COVID-19 disease progression is linked to coagulation abnormalities, but the exact connection with thrombin and D-dimer remains uncertain. A study examining coagulation parameters in COVID-19 patients admitted to Al-Diwania Educational Hospital from February to May 2022 found that thrombin and D-dimer levels were directly related to disease severity. Severe cases exhibited significantly altered coagulation function compared to mild and recovered cases, with notably higher D-dimer levels and elevated thrombin serum concentrations. Moreover, dyslipidemia, particularly low HDL cholesterol, is a prevalent comorbidity in COVID-19 patients and may be linked to worse outcomes. In conclusion, COVID-19 is associated with a prothrombotic state and dysregulation of the renin-angiotensin system due to ACE2 downregulation following viral binding. The intricate interplay between ACE2, thrombin, D-dimer, and lipid profile necessitates further investigation. The multifaceted nature of the disease demands continued research to unravel its pathogenesis and identify potential therapeutic targets.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10890-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10890-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19 患者经历了 ACE2、凝血酶、D-二聚体和血脂谱之间复杂的相互作用,但对其全面的了解仍是未知数。ACE2 是肾素-血管紧张素系统的关键调节因子,也是 SARS-CoV-2 的主要受体,与病毒结合后会发生下调,可能导致急性呼吸窘迫综合征(ARDS)的严重病例。特定的 ACE2 基因多态性(rs2285666)可能与 COVID-19 易感性有关,A 等位基因可能会增加感染风险。COVID-19 疾病的进展与凝血异常有关,但与凝血酶和 D-二聚体的确切联系仍不确定。一项研究对 2022 年 2 月至 5 月入住 Al-Diwania 教育医院的 COVID-19 患者的凝血参数进行了检测,发现凝血酶和 D-二聚体水平与疾病严重程度直接相关。与轻度病例和康复病例相比,重度病例的凝血功能明显改变,D-二聚体水平明显升高,凝血酶血清浓度升高。此外,血脂异常,尤其是低高密度脂蛋白胆固醇,是 COVID-19 患者的常见合并症,可能与预后恶化有关。总之,COVID-19 与促血栓形成状态和肾素-血管紧张素系统失调有关,这是由于病毒结合后 ACE2 下调所致。ACE2、凝血酶、D-二聚体和血脂谱之间错综复杂的相互作用需要进一步研究。这种疾病具有多面性,需要继续进行研究,以揭示其发病机制并确定潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of ACE2 Receptor and Its Polymorphisms in COVID-19 Infection and Severity and Its Association with Lipid Profile, Thrombin, and D-Dimer Levels in Iraqi Patients: A Cross-Sectional Study.

COVID-19 patients experience a complex interplay involving ACE2, thrombin, D-dimer, and lipid profile, yet its full understanding remains elusive. ACE2, a pivotal regulator of the renin-angiotensin system and the primary receptor for SARS-CoV-2 undergoes downregulation upon viral binding, potentially leading to severe cases with acute respiratory distress syndrome (ARDS). A specific ACE2 gene polymorphism (rs2285666) may be associated with COVID-19 susceptibility, with the A allele potentially increasing infection risk. COVID-19 disease progression is linked to coagulation abnormalities, but the exact connection with thrombin and D-dimer remains uncertain. A study examining coagulation parameters in COVID-19 patients admitted to Al-Diwania Educational Hospital from February to May 2022 found that thrombin and D-dimer levels were directly related to disease severity. Severe cases exhibited significantly altered coagulation function compared to mild and recovered cases, with notably higher D-dimer levels and elevated thrombin serum concentrations. Moreover, dyslipidemia, particularly low HDL cholesterol, is a prevalent comorbidity in COVID-19 patients and may be linked to worse outcomes. In conclusion, COVID-19 is associated with a prothrombotic state and dysregulation of the renin-angiotensin system due to ACE2 downregulation following viral binding. The intricate interplay between ACE2, thrombin, D-dimer, and lipid profile necessitates further investigation. The multifaceted nature of the disease demands continued research to unravel its pathogenesis and identify potential therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
期刊最新文献
The Novel Direct AR Target Gene Annexin A2 Mediates Androgen-Induced Cellular Senescence in Prostate Cancer Cells. Genetic Parameters and Prediction of Genotypic Values for Postharvest Physiological Deterioration Tolerance and Root Traits in Cassava using REML/BLUP. Maternal Genetic Diversity Analysis of Guanling Cattle by Mitochondrial Genome Sequencing. Identification of Novel Genomic Variants in COVID-19 Patients Using Whole-Exome Sequencing: Exploring the Plausible Targets of Functional Genomics. A Meta-Analysis of Association Between Interleukin Polymorphisms (rs4073, rs1800925, rs1179251, rs1179246, rs2227485, rs17855750, and rs153109) and Colorectal Cancer Risk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1