基于深度学习的高分辨率相位对比图像中亚细胞器的分割。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-30 Epub Date: 2024-07-31 DOI:10.1247/csf.24036
Kentaro Shimasaki, Yuko Okemoto-Nakamura, Kyoko Saito, Masayoshi Fukasawa, Kaoru Katoh, Kentaro Hanada
{"title":"基于深度学习的高分辨率相位对比图像中亚细胞器的分割。","authors":"Kentaro Shimasaki, Yuko Okemoto-Nakamura, Kyoko Saito, Masayoshi Fukasawa, Kaoru Katoh, Kentaro Hanada","doi":"10.1247/csf.24036","DOIUrl":null,"url":null,"abstract":"<p><p>Although quantitative analysis of biological images demands precise extraction of specific organelles or cells, it remains challenging in broad-field grayscale images, where traditional thresholding methods have been hampered due to complex image features. Nevertheless, rapidly growing artificial intelligence technology is overcoming obstacles. We previously reported the fine-tuned apodized phase-contrast microscopy system to capture high-resolution, label-free images of organelle dynamics in unstained living cells (Shimasaki, K. et al. (2024). Cell Struct. Funct., 49: 21-29). We here showed machine learning-based segmentation models for subcellular targeted objects in phase-contrast images using fluorescent markers as origins of ground truth masks. This method enables accurate segmentation of organelles in high-resolution phase-contrast images, providing a practical framework for studying cellular dynamics in unstained living cells.Key words: label-free imaging, organelle dynamics, apodized phase contrast, deep learning-based segmentation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based segmentation of subcellular organelles in high-resolution phase-contrast images.\",\"authors\":\"Kentaro Shimasaki, Yuko Okemoto-Nakamura, Kyoko Saito, Masayoshi Fukasawa, Kaoru Katoh, Kentaro Hanada\",\"doi\":\"10.1247/csf.24036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although quantitative analysis of biological images demands precise extraction of specific organelles or cells, it remains challenging in broad-field grayscale images, where traditional thresholding methods have been hampered due to complex image features. Nevertheless, rapidly growing artificial intelligence technology is overcoming obstacles. We previously reported the fine-tuned apodized phase-contrast microscopy system to capture high-resolution, label-free images of organelle dynamics in unstained living cells (Shimasaki, K. et al. (2024). Cell Struct. Funct., 49: 21-29). We here showed machine learning-based segmentation models for subcellular targeted objects in phase-contrast images using fluorescent markers as origins of ground truth masks. This method enables accurate segmentation of organelles in high-resolution phase-contrast images, providing a practical framework for studying cellular dynamics in unstained living cells.Key words: label-free imaging, organelle dynamics, apodized phase contrast, deep learning-based segmentation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1247/csf.24036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.24036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

虽然生物图像的定量分析需要精确提取特定的细胞器或细胞,但在宽视场灰度图像中,由于复杂的图像特征,传统的阈值分析方法一直受到阻碍,因此定量分析仍然具有挑战性。然而,快速发展的人工智能技术正在克服这些障碍。我们曾报道过微调的光栅化相位对比显微镜系统,可捕捉未染色活细胞中细胞器动态的高分辨率无标记图像(Shimasaki, K. et al. (2024).Cell Struct.Funct.,49:21-29)。我们在此展示了基于机器学习的相位对比图像亚细胞目标对象分割模型,该模型使用荧光标记作为地面实况掩膜的起源。这种方法能在高分辨率相位对比图像中准确分割细胞器,为研究未染色活细胞的细胞动力学提供了一个实用框架:无标签成像 细胞器动力学 光栅化相位对比 基于深度学习的分割
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning-based segmentation of subcellular organelles in high-resolution phase-contrast images.

Although quantitative analysis of biological images demands precise extraction of specific organelles or cells, it remains challenging in broad-field grayscale images, where traditional thresholding methods have been hampered due to complex image features. Nevertheless, rapidly growing artificial intelligence technology is overcoming obstacles. We previously reported the fine-tuned apodized phase-contrast microscopy system to capture high-resolution, label-free images of organelle dynamics in unstained living cells (Shimasaki, K. et al. (2024). Cell Struct. Funct., 49: 21-29). We here showed machine learning-based segmentation models for subcellular targeted objects in phase-contrast images using fluorescent markers as origins of ground truth masks. This method enables accurate segmentation of organelles in high-resolution phase-contrast images, providing a practical framework for studying cellular dynamics in unstained living cells.Key words: label-free imaging, organelle dynamics, apodized phase contrast, deep learning-based segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1