Yuqin Wang, Zijian Yang, Xingneng Guo, Wang Jin, Dan Lin, Anying Chen, Meng Zhou
{"title":"利用深度学习从超宽域彩色眼底摄影中自动早期检测急性视网膜坏死。","authors":"Yuqin Wang, Zijian Yang, Xingneng Guo, Wang Jin, Dan Lin, Anying Chen, Meng Zhou","doi":"10.1186/s40662-024-00396-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute retinal necrosis (ARN) is a relatively rare but highly damaging and potentially sight-threatening type of uveitis caused by infection with the human herpesvirus. Without timely diagnosis and appropriate treatment, ARN can lead to severe vision loss. We aimed to develop a deep learning framework to distinguish ARN from other types of intermediate, posterior, and panuveitis using ultra-widefield color fundus photography (UWFCFP).</p><p><strong>Methods: </strong>We conducted a two-center retrospective discovery and validation study to develop and validate a deep learning model called DeepDrARN for automatic uveitis detection and differentiation of ARN from other uveitis types using 11,508 UWFCFPs from 1,112 participants. Model performance was evaluated with the area under the receiver operating characteristic curve (AUROC), the area under the precision and recall curves (AUPR), sensitivity and specificity, and compared with seven ophthalmologists.</p><p><strong>Results: </strong>DeepDrARN for uveitis screening achieved an AUROC of 0.996 (95% CI: 0.994-0.999) in the internal validation cohort and demonstrated good generalizability with an AUROC of 0.973 (95% CI: 0.956-0.990) in the external validation cohort. DeepDrARN also demonstrated excellent predictive ability in distinguishing ARN from other types of uveitis with AUROCs of 0.960 (95% CI: 0.943-0.977) and 0.971 (95% CI: 0.956-0.986) in the internal and external validation cohorts. DeepDrARN was also tested in the differentiation of ARN, non-ARN uveitis (NAU) and normal subjects, with sensitivities of 88.9% and 78.7% and specificities of 93.8% and 89.1% in the internal and external validation cohorts, respectively. The performance of DeepDrARN is comparable to that of ophthalmologists and even exceeds the average accuracy of seven ophthalmologists, showing an improvement of 6.57% in uveitis screening and 11.14% in ARN identification.</p><p><strong>Conclusions: </strong>Our study demonstrates the feasibility of deep learning algorithms in enabling early detection, reducing treatment delays, and improving outcomes for ARN patients.</p>","PeriodicalId":12194,"journal":{"name":"Eye and Vision","volume":"11 1","pages":"27"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293155/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated early detection of acute retinal necrosis from ultra-widefield color fundus photography using deep learning.\",\"authors\":\"Yuqin Wang, Zijian Yang, Xingneng Guo, Wang Jin, Dan Lin, Anying Chen, Meng Zhou\",\"doi\":\"10.1186/s40662-024-00396-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acute retinal necrosis (ARN) is a relatively rare but highly damaging and potentially sight-threatening type of uveitis caused by infection with the human herpesvirus. Without timely diagnosis and appropriate treatment, ARN can lead to severe vision loss. We aimed to develop a deep learning framework to distinguish ARN from other types of intermediate, posterior, and panuveitis using ultra-widefield color fundus photography (UWFCFP).</p><p><strong>Methods: </strong>We conducted a two-center retrospective discovery and validation study to develop and validate a deep learning model called DeepDrARN for automatic uveitis detection and differentiation of ARN from other uveitis types using 11,508 UWFCFPs from 1,112 participants. Model performance was evaluated with the area under the receiver operating characteristic curve (AUROC), the area under the precision and recall curves (AUPR), sensitivity and specificity, and compared with seven ophthalmologists.</p><p><strong>Results: </strong>DeepDrARN for uveitis screening achieved an AUROC of 0.996 (95% CI: 0.994-0.999) in the internal validation cohort and demonstrated good generalizability with an AUROC of 0.973 (95% CI: 0.956-0.990) in the external validation cohort. DeepDrARN also demonstrated excellent predictive ability in distinguishing ARN from other types of uveitis with AUROCs of 0.960 (95% CI: 0.943-0.977) and 0.971 (95% CI: 0.956-0.986) in the internal and external validation cohorts. DeepDrARN was also tested in the differentiation of ARN, non-ARN uveitis (NAU) and normal subjects, with sensitivities of 88.9% and 78.7% and specificities of 93.8% and 89.1% in the internal and external validation cohorts, respectively. The performance of DeepDrARN is comparable to that of ophthalmologists and even exceeds the average accuracy of seven ophthalmologists, showing an improvement of 6.57% in uveitis screening and 11.14% in ARN identification.</p><p><strong>Conclusions: </strong>Our study demonstrates the feasibility of deep learning algorithms in enabling early detection, reducing treatment delays, and improving outcomes for ARN patients.</p>\",\"PeriodicalId\":12194,\"journal\":{\"name\":\"Eye and Vision\",\"volume\":\"11 1\",\"pages\":\"27\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eye and Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40662-024-00396-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye and Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40662-024-00396-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Automated early detection of acute retinal necrosis from ultra-widefield color fundus photography using deep learning.
Background: Acute retinal necrosis (ARN) is a relatively rare but highly damaging and potentially sight-threatening type of uveitis caused by infection with the human herpesvirus. Without timely diagnosis and appropriate treatment, ARN can lead to severe vision loss. We aimed to develop a deep learning framework to distinguish ARN from other types of intermediate, posterior, and panuveitis using ultra-widefield color fundus photography (UWFCFP).
Methods: We conducted a two-center retrospective discovery and validation study to develop and validate a deep learning model called DeepDrARN for automatic uveitis detection and differentiation of ARN from other uveitis types using 11,508 UWFCFPs from 1,112 participants. Model performance was evaluated with the area under the receiver operating characteristic curve (AUROC), the area under the precision and recall curves (AUPR), sensitivity and specificity, and compared with seven ophthalmologists.
Results: DeepDrARN for uveitis screening achieved an AUROC of 0.996 (95% CI: 0.994-0.999) in the internal validation cohort and demonstrated good generalizability with an AUROC of 0.973 (95% CI: 0.956-0.990) in the external validation cohort. DeepDrARN also demonstrated excellent predictive ability in distinguishing ARN from other types of uveitis with AUROCs of 0.960 (95% CI: 0.943-0.977) and 0.971 (95% CI: 0.956-0.986) in the internal and external validation cohorts. DeepDrARN was also tested in the differentiation of ARN, non-ARN uveitis (NAU) and normal subjects, with sensitivities of 88.9% and 78.7% and specificities of 93.8% and 89.1% in the internal and external validation cohorts, respectively. The performance of DeepDrARN is comparable to that of ophthalmologists and even exceeds the average accuracy of seven ophthalmologists, showing an improvement of 6.57% in uveitis screening and 11.14% in ARN identification.
Conclusions: Our study demonstrates the feasibility of deep learning algorithms in enabling early detection, reducing treatment delays, and improving outcomes for ARN patients.
期刊介绍:
Eye and Vision is an open access, peer-reviewed journal for ophthalmologists and visual science specialists. It welcomes research articles, reviews, methodologies, commentaries, case reports, perspectives and short reports encompassing all aspects of eye and vision. Topics of interest include but are not limited to: current developments of theoretical, experimental and clinical investigations in ophthalmology, optometry and vision science which focus on novel and high-impact findings on central issues pertaining to biology, pathophysiology and etiology of eye diseases as well as advances in diagnostic techniques, surgical treatment, instrument updates, the latest drug findings, results of clinical trials and research findings. It aims to provide ophthalmologists and visual science specialists with the latest developments in theoretical, experimental and clinical investigations in eye and vision.