概率神经传递函数估计与贝叶斯系统识别。

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS PLoS Computational Biology Pub Date : 2024-07-31 eCollection Date: 2024-07-01 DOI:10.1371/journal.pcbi.1012354
Nan Wu, Isabel Valera, Fabian Sinz, Alexander Ecker, Thomas Euler, Yongrong Qiu
{"title":"概率神经传递函数估计与贝叶斯系统识别。","authors":"Nan Wu, Isabel Valera, Fabian Sinz, Alexander Ecker, Thomas Euler, Yongrong Qiu","doi":"10.1371/journal.pcbi.1012354","DOIUrl":null,"url":null,"abstract":"<p><p>Neural population responses in sensory systems are driven by external physical stimuli. This stimulus-response relationship is typically characterized by receptive fields, which have been estimated by neural system identification approaches. Such models usually require a large amount of training data, yet, the recording time for animal experiments is limited, giving rise to epistemic uncertainty for the learned neural transfer functions. While deep neural network models have demonstrated excellent power on neural prediction, they usually do not provide the uncertainty of the resulting neural representations and derived statistics, such as most exciting inputs (MEIs), from in silico experiments. Here, we present a Bayesian system identification approach to predict neural responses to visual stimuli, and explore whether explicitly modeling network weight variability can be beneficial for identifying neural response properties. To this end, we use variational inference to estimate the posterior distribution of each model weight given the training data. Tests with different neural datasets demonstrate that this method can achieve higher or comparable performance on neural prediction, with a much higher data efficiency compared to Monte Carlo dropout methods and traditional models using point estimates of the model parameters. At the same time, our variational method provides us with an effectively infinite ensemble, avoiding the idiosyncrasy of any single model, to generate MEIs. This allows us to estimate the uncertainty of stimulus-response function, which we have found to be negatively correlated with the predictive performance at model level and may serve to evaluate models. Furthermore, our approach enables us to identify response properties with credible intervals and to determine whether the inferred features are meaningful by performing statistical tests on MEIs. Finally, in silico experiments show that our model generates stimuli driving neuronal activity significantly better than traditional models in the limited-data regime.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318871/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probabilistic neural transfer function estimation with Bayesian system identification.\",\"authors\":\"Nan Wu, Isabel Valera, Fabian Sinz, Alexander Ecker, Thomas Euler, Yongrong Qiu\",\"doi\":\"10.1371/journal.pcbi.1012354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural population responses in sensory systems are driven by external physical stimuli. This stimulus-response relationship is typically characterized by receptive fields, which have been estimated by neural system identification approaches. Such models usually require a large amount of training data, yet, the recording time for animal experiments is limited, giving rise to epistemic uncertainty for the learned neural transfer functions. While deep neural network models have demonstrated excellent power on neural prediction, they usually do not provide the uncertainty of the resulting neural representations and derived statistics, such as most exciting inputs (MEIs), from in silico experiments. Here, we present a Bayesian system identification approach to predict neural responses to visual stimuli, and explore whether explicitly modeling network weight variability can be beneficial for identifying neural response properties. To this end, we use variational inference to estimate the posterior distribution of each model weight given the training data. Tests with different neural datasets demonstrate that this method can achieve higher or comparable performance on neural prediction, with a much higher data efficiency compared to Monte Carlo dropout methods and traditional models using point estimates of the model parameters. At the same time, our variational method provides us with an effectively infinite ensemble, avoiding the idiosyncrasy of any single model, to generate MEIs. This allows us to estimate the uncertainty of stimulus-response function, which we have found to be negatively correlated with the predictive performance at model level and may serve to evaluate models. Furthermore, our approach enables us to identify response properties with credible intervals and to determine whether the inferred features are meaningful by performing statistical tests on MEIs. Finally, in silico experiments show that our model generates stimuli driving neuronal activity significantly better than traditional models in the limited-data regime.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318871/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012354\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012354","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

感觉系统中的神经群体反应是由外部物理刺激驱动的。这种刺激-反应关系通常以感受野为特征,而感受野是通过神经系统识别方法估算出来的。此类模型通常需要大量的训练数据,然而动物实验的记录时间有限,这就给所学神经传递函数带来了认识上的不确定性。虽然深度神经网络模型在神经预测方面表现出了卓越的能力,但它们通常无法提供所产生的神经表征的不确定性,以及从硅学实验中得出的统计数据,如最令人兴奋的输入(MEIs)。在此,我们提出了一种贝叶斯系统识别方法来预测神经对视觉刺激的反应,并探讨明确地模拟网络权重的可变性是否有利于识别神经反应特性。为此,我们使用变异推理来估计给定训练数据的每个模型权重的后验分布。使用不同神经数据集进行的测试表明,这种方法可以在神经预测方面获得更高或相当的性能,与蒙特卡罗放弃方法和使用模型参数点估计的传统模型相比,数据效率要高得多。同时,我们的变异方法为我们提供了一个有效的无限集合,避免了任何单一模型的特异性,从而生成 MEIs。这种方法可以估算刺激-反应函数的不确定性,我们发现这种不确定性与模型水平的预测性能呈负相关,可用于评估模型。此外,我们的方法还能确定具有可信区间的反应特性,并通过对 MEIs 进行统计检验来确定推断出的特征是否有意义。最后,硅学实验表明,在数据有限的情况下,我们的模型生成的刺激驱动神经元活动的效果明显优于传统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic neural transfer function estimation with Bayesian system identification.

Neural population responses in sensory systems are driven by external physical stimuli. This stimulus-response relationship is typically characterized by receptive fields, which have been estimated by neural system identification approaches. Such models usually require a large amount of training data, yet, the recording time for animal experiments is limited, giving rise to epistemic uncertainty for the learned neural transfer functions. While deep neural network models have demonstrated excellent power on neural prediction, they usually do not provide the uncertainty of the resulting neural representations and derived statistics, such as most exciting inputs (MEIs), from in silico experiments. Here, we present a Bayesian system identification approach to predict neural responses to visual stimuli, and explore whether explicitly modeling network weight variability can be beneficial for identifying neural response properties. To this end, we use variational inference to estimate the posterior distribution of each model weight given the training data. Tests with different neural datasets demonstrate that this method can achieve higher or comparable performance on neural prediction, with a much higher data efficiency compared to Monte Carlo dropout methods and traditional models using point estimates of the model parameters. At the same time, our variational method provides us with an effectively infinite ensemble, avoiding the idiosyncrasy of any single model, to generate MEIs. This allows us to estimate the uncertainty of stimulus-response function, which we have found to be negatively correlated with the predictive performance at model level and may serve to evaluate models. Furthermore, our approach enables us to identify response properties with credible intervals and to determine whether the inferred features are meaningful by performing statistical tests on MEIs. Finally, in silico experiments show that our model generates stimuli driving neuronal activity significantly better than traditional models in the limited-data regime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
Shedding light on blue-green photosynthesis: A wavelength-dependent mathematical model of photosynthesis in Synechocystis sp. PCC 6803 Design and implementation of an asynchronous online course-based undergraduate research experience (CURE) in computational genomics An exploration into CTEPH medications: Combining natural language processing, embedding learning, in vitro models, and real-world evidence for drug repurposing Calibrating dimension reduction hyperparameters in the presence of noise Comparison and benchmark of deep learning methods for non-coding RNA classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1