Kyung Chul Shin, Houda Yasmine Ali Moussa, Yongsoo Park
{"title":"胆固醇失衡与神经变性中的神经传递缺陷","authors":"Kyung Chul Shin, Houda Yasmine Ali Moussa, Yongsoo Park","doi":"10.1038/s12276-024-01273-4","DOIUrl":null,"url":null,"abstract":"The brain contains the highest concentration of cholesterol in the human body, which emphasizes the importance of cholesterol in brain physiology. Cholesterol is involved in neurogenesis and synaptogenesis, and age-related reductions in cholesterol levels can lead to synaptic loss and impaired synaptic plasticity, which potentially contribute to neurodegeneration. The maintenance of cholesterol homeostasis in the neuronal plasma membrane is essential for normal brain function, and imbalances in cholesterol distribution are associated with various neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. This review aims to explore the molecular and pathological mechanisms by which cholesterol imbalance can lead to neurotransmission defects and neurodegeneration, focusing on four key mechanisms: (1) synaptic dysfunction, (2) alterations in membrane structure and protein clustering, (3) oligomers of amyloid beta (Aβ) protein, and (4) α-synuclein aggregation. Cholesterol, a substance crucial for the brain, can lead to diseases like Alzheimer’s and Parkinson’s when imbalanced. This review investigates how this imbalance causes brain cell degeneration, focusing on issues like communication breakdown and harmful protein build-up. The study combines findings from different experiments to understand cholesterol’s role in the brain. The review emphasizes the need for cholesterol balance for brain health and identifies potential treatment targets for neurodegenerative diseases. The main findings suggest that cholesterol imbalance disrupts brain cell communication and leads to harmful protein build-up, causing brain cell degeneration. The researchers conclude that focusing on cholesterol metabolism and distribution could lead to new treatments for these conditions. Future research may lead to treatments that correct cholesterol imbalances, possibly slowing or preventing neurodegenerative diseases. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01273-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Cholesterol imbalance and neurotransmission defects in neurodegeneration\",\"authors\":\"Kyung Chul Shin, Houda Yasmine Ali Moussa, Yongsoo Park\",\"doi\":\"10.1038/s12276-024-01273-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The brain contains the highest concentration of cholesterol in the human body, which emphasizes the importance of cholesterol in brain physiology. Cholesterol is involved in neurogenesis and synaptogenesis, and age-related reductions in cholesterol levels can lead to synaptic loss and impaired synaptic plasticity, which potentially contribute to neurodegeneration. The maintenance of cholesterol homeostasis in the neuronal plasma membrane is essential for normal brain function, and imbalances in cholesterol distribution are associated with various neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. This review aims to explore the molecular and pathological mechanisms by which cholesterol imbalance can lead to neurotransmission defects and neurodegeneration, focusing on four key mechanisms: (1) synaptic dysfunction, (2) alterations in membrane structure and protein clustering, (3) oligomers of amyloid beta (Aβ) protein, and (4) α-synuclein aggregation. Cholesterol, a substance crucial for the brain, can lead to diseases like Alzheimer’s and Parkinson’s when imbalanced. This review investigates how this imbalance causes brain cell degeneration, focusing on issues like communication breakdown and harmful protein build-up. The study combines findings from different experiments to understand cholesterol’s role in the brain. The review emphasizes the need for cholesterol balance for brain health and identifies potential treatment targets for neurodegenerative diseases. The main findings suggest that cholesterol imbalance disrupts brain cell communication and leads to harmful protein build-up, causing brain cell degeneration. The researchers conclude that focusing on cholesterol metabolism and distribution could lead to new treatments for these conditions. Future research may lead to treatments that correct cholesterol imbalances, possibly slowing or preventing neurodegenerative diseases. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.\",\"PeriodicalId\":50466,\"journal\":{\"name\":\"Experimental and Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s12276-024-01273-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s12276-024-01273-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s12276-024-01273-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cholesterol imbalance and neurotransmission defects in neurodegeneration
The brain contains the highest concentration of cholesterol in the human body, which emphasizes the importance of cholesterol in brain physiology. Cholesterol is involved in neurogenesis and synaptogenesis, and age-related reductions in cholesterol levels can lead to synaptic loss and impaired synaptic plasticity, which potentially contribute to neurodegeneration. The maintenance of cholesterol homeostasis in the neuronal plasma membrane is essential for normal brain function, and imbalances in cholesterol distribution are associated with various neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. This review aims to explore the molecular and pathological mechanisms by which cholesterol imbalance can lead to neurotransmission defects and neurodegeneration, focusing on four key mechanisms: (1) synaptic dysfunction, (2) alterations in membrane structure and protein clustering, (3) oligomers of amyloid beta (Aβ) protein, and (4) α-synuclein aggregation. Cholesterol, a substance crucial for the brain, can lead to diseases like Alzheimer’s and Parkinson’s when imbalanced. This review investigates how this imbalance causes brain cell degeneration, focusing on issues like communication breakdown and harmful protein build-up. The study combines findings from different experiments to understand cholesterol’s role in the brain. The review emphasizes the need for cholesterol balance for brain health and identifies potential treatment targets for neurodegenerative diseases. The main findings suggest that cholesterol imbalance disrupts brain cell communication and leads to harmful protein build-up, causing brain cell degeneration. The researchers conclude that focusing on cholesterol metabolism and distribution could lead to new treatments for these conditions. Future research may lead to treatments that correct cholesterol imbalances, possibly slowing or preventing neurodegenerative diseases. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
期刊介绍:
Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.