Htoo A. Wai, Eliska Svobodova, Natalia Romero Herrera, Andrew G. L. Douglas, John W. Holloway, Francisco E. Baralle, Marco Baralle, Diana Baralle
{"title":"为纠正异常剪接而设计的定制反义寡核苷酸揭示了罕见遗传疾病的可操作突变群。","authors":"Htoo A. Wai, Eliska Svobodova, Natalia Romero Herrera, Andrew G. L. Douglas, John W. Holloway, Francisco E. Baralle, Marco Baralle, Diana Baralle","doi":"10.1038/s12276-024-01292-1","DOIUrl":null,"url":null,"abstract":"Effective translation of rare disease diagnosis knowledge into therapeutic applications is achievable within a reasonable timeframe; where mutations are amenable to current antisense oligonucleotide technology. In our study, we identified five distinct types of abnormal splice-causing mutations in patients with rare genetic disorders and developed a tailored antisense oligonucleotide for each mutation type using phosphorodiamidate morpholino oligomers with or without octa-guanidine dendrimers and 2′-O-methoxyethyl phosphorothioate. We observed variations in treatment effects and efficiencies, influenced by both the chosen chemistry and the specific nature of the aberrant splicing patterns targeted for correction. Our study demonstrated the successful correction of all five different types of aberrant splicing. Our findings reveal that effective correction of aberrant splicing can depend on altering the chemical composition of oligonucleotides and suggest a fast, efficient, and feasible approach for developing personalized therapeutic interventions for genetic disorders within short time frames. Millions globally suffer from rare diseases, often genetic and affecting children. This study explores using antisense oligonucleotides to fix incorrect RNA splicing, a common result of disease-causing genetic mutations. The results showed that tailored ASOs could correct incorrect splicing for various mutation types, showing this technology′s potential in treating rare genetic diseases. The team chose five mutation types disrupting normal splicing and created specific ASOs to correct these errors in cell models. They created minigenes to simulate the mutations and tested different ASOs′ effectiveness. This method was key to understanding ASOs′ ability to restore normal gene function, crucial for developing targeted treatments for rare genetic disorders. This research could lead to new, targeted treatments for rare genetic disorders, offering hope to millions of patients and their families facing limited treatment options. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 8","pages":"1816-1825"},"PeriodicalIF":9.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01292-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Tailored antisense oligonucleotides designed to correct aberrant splicing reveal actionable groups of mutations for rare genetic disorders\",\"authors\":\"Htoo A. Wai, Eliska Svobodova, Natalia Romero Herrera, Andrew G. L. Douglas, John W. Holloway, Francisco E. Baralle, Marco Baralle, Diana Baralle\",\"doi\":\"10.1038/s12276-024-01292-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective translation of rare disease diagnosis knowledge into therapeutic applications is achievable within a reasonable timeframe; where mutations are amenable to current antisense oligonucleotide technology. In our study, we identified five distinct types of abnormal splice-causing mutations in patients with rare genetic disorders and developed a tailored antisense oligonucleotide for each mutation type using phosphorodiamidate morpholino oligomers with or without octa-guanidine dendrimers and 2′-O-methoxyethyl phosphorothioate. We observed variations in treatment effects and efficiencies, influenced by both the chosen chemistry and the specific nature of the aberrant splicing patterns targeted for correction. Our study demonstrated the successful correction of all five different types of aberrant splicing. Our findings reveal that effective correction of aberrant splicing can depend on altering the chemical composition of oligonucleotides and suggest a fast, efficient, and feasible approach for developing personalized therapeutic interventions for genetic disorders within short time frames. Millions globally suffer from rare diseases, often genetic and affecting children. This study explores using antisense oligonucleotides to fix incorrect RNA splicing, a common result of disease-causing genetic mutations. The results showed that tailored ASOs could correct incorrect splicing for various mutation types, showing this technology′s potential in treating rare genetic diseases. The team chose five mutation types disrupting normal splicing and created specific ASOs to correct these errors in cell models. They created minigenes to simulate the mutations and tested different ASOs′ effectiveness. This method was key to understanding ASOs′ ability to restore normal gene function, crucial for developing targeted treatments for rare genetic disorders. This research could lead to new, targeted treatments for rare genetic disorders, offering hope to millions of patients and their families facing limited treatment options. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.\",\"PeriodicalId\":50466,\"journal\":{\"name\":\"Experimental and Molecular Medicine\",\"volume\":\"56 8\",\"pages\":\"1816-1825\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s12276-024-01292-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s12276-024-01292-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s12276-024-01292-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tailored antisense oligonucleotides designed to correct aberrant splicing reveal actionable groups of mutations for rare genetic disorders
Effective translation of rare disease diagnosis knowledge into therapeutic applications is achievable within a reasonable timeframe; where mutations are amenable to current antisense oligonucleotide technology. In our study, we identified five distinct types of abnormal splice-causing mutations in patients with rare genetic disorders and developed a tailored antisense oligonucleotide for each mutation type using phosphorodiamidate morpholino oligomers with or without octa-guanidine dendrimers and 2′-O-methoxyethyl phosphorothioate. We observed variations in treatment effects and efficiencies, influenced by both the chosen chemistry and the specific nature of the aberrant splicing patterns targeted for correction. Our study demonstrated the successful correction of all five different types of aberrant splicing. Our findings reveal that effective correction of aberrant splicing can depend on altering the chemical composition of oligonucleotides and suggest a fast, efficient, and feasible approach for developing personalized therapeutic interventions for genetic disorders within short time frames. Millions globally suffer from rare diseases, often genetic and affecting children. This study explores using antisense oligonucleotides to fix incorrect RNA splicing, a common result of disease-causing genetic mutations. The results showed that tailored ASOs could correct incorrect splicing for various mutation types, showing this technology′s potential in treating rare genetic diseases. The team chose five mutation types disrupting normal splicing and created specific ASOs to correct these errors in cell models. They created minigenes to simulate the mutations and tested different ASOs′ effectiveness. This method was key to understanding ASOs′ ability to restore normal gene function, crucial for developing targeted treatments for rare genetic disorders. This research could lead to new, targeted treatments for rare genetic disorders, offering hope to millions of patients and their families facing limited treatment options. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
期刊介绍:
Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.