均匀冷却颗粒气体中的旋转和平移运动。

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES npj Microgravity Pub Date : 2024-07-31 DOI:10.1038/s41526-024-00420-5
Torsten Trittel, Dmitry Puzyrev, Kirsten Harth, Ralf Stannarius
{"title":"均匀冷却颗粒气体中的旋转和平移运动。","authors":"Torsten Trittel, Dmitry Puzyrev, Kirsten Harth, Ralf Stannarius","doi":"10.1038/s41526-024-00420-5","DOIUrl":null,"url":null,"abstract":"<p><p>A granular gas composed of monodisperse spherical particles was studied in microgravity experiments in a drop tower. Translations and rotations of the particles were extracted from optical video data. Equipartition is violated, the rotational degrees of freedom were excited only to roughly 2/3 of the translational ones. After stopping the mechanical excitation, we observed granular cooling of the ensemble for a period of three times the Haff time, where the kinetic energy dropped to about 5% of its initial value. The cooling rates of all observable degrees of freedom were comparable, and the ratio of rotational and translational kinetic energies fluctuated around a constant value. The distributions of translational and rotational velocity components showed slight but systematic deviations from Gaussians at the start of cooling.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"81"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291629/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rotational and translational motions in a homogeneously cooling granular gas.\",\"authors\":\"Torsten Trittel, Dmitry Puzyrev, Kirsten Harth, Ralf Stannarius\",\"doi\":\"10.1038/s41526-024-00420-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A granular gas composed of monodisperse spherical particles was studied in microgravity experiments in a drop tower. Translations and rotations of the particles were extracted from optical video data. Equipartition is violated, the rotational degrees of freedom were excited only to roughly 2/3 of the translational ones. After stopping the mechanical excitation, we observed granular cooling of the ensemble for a period of three times the Haff time, where the kinetic energy dropped to about 5% of its initial value. The cooling rates of all observable degrees of freedom were comparable, and the ratio of rotational and translational kinetic energies fluctuated around a constant value. The distributions of translational and rotational velocity components showed slight but systematic deviations from Gaussians at the start of cooling.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"10 1\",\"pages\":\"81\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291629/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-024-00420-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00420-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在落塔的微重力实验中研究了由单分散球形颗粒组成的颗粒气体。粒子的平移和旋转是从光学视频数据中提取的。由于违反了等分原则,旋转自由度仅被激发到平移自由度的大约 2/3。停止机械激励后,我们观察到粒子群在三倍哈夫时间内出现颗粒状冷却,动能下降到初始值的大约 5%。所有可观测自由度的冷却速率相当,旋转动能和平移动能之比围绕一个恒定值波动。在冷却开始时,平移和旋转速度分量的分布与高斯分布有轻微但系统的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rotational and translational motions in a homogeneously cooling granular gas.

A granular gas composed of monodisperse spherical particles was studied in microgravity experiments in a drop tower. Translations and rotations of the particles were extracted from optical video data. Equipartition is violated, the rotational degrees of freedom were excited only to roughly 2/3 of the translational ones. After stopping the mechanical excitation, we observed granular cooling of the ensemble for a period of three times the Haff time, where the kinetic energy dropped to about 5% of its initial value. The cooling rates of all observable degrees of freedom were comparable, and the ratio of rotational and translational kinetic energies fluctuated around a constant value. The distributions of translational and rotational velocity components showed slight but systematic deviations from Gaussians at the start of cooling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
期刊最新文献
Stressors affect human motor timing during spaceflight. Development and characterization of a low intensity vibrational system for microgravity studies. Challenges for the human immune system after leaving Earth. Retinal blood vessel diameter changes with 60-day head-down bedrest are unaffected by antioxidant nutritional cocktail. Articular cartilage loss is an unmitigated risk of human spaceflight.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1