虹膜锥束 CT 图像中腮腺导管闭合性涎腺的自动分割和深度学习分类。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal of Computer Assisted Radiology and Surgery Pub Date : 2025-01-01 Epub Date: 2024-07-31 DOI:10.1007/s11548-024-03240-w
Elia Halle, Tevel Amiel, Doron J Aframian, Tal Malik, Avital Rozenthal, Oren Shauly, Leo Joskowicz, Chen Nadler, Talia Yeshua
{"title":"虹膜锥束 CT 图像中腮腺导管闭合性涎腺的自动分割和深度学习分类。","authors":"Elia Halle, Tevel Amiel, Doron J Aframian, Tal Malik, Avital Rozenthal, Oren Shauly, Leo Joskowicz, Chen Nadler, Talia Yeshua","doi":"10.1007/s11548-024-03240-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study addressed the challenge of detecting and classifying the severity of ductopenia in parotid glands, a structural abnormality characterized by a reduced number of salivary ducts, previously shown to be associated with salivary gland impairment. The aim of the study was to develop an automatic algorithm designed to improve diagnostic accuracy and efficiency in analyzing ductopenic parotid glands using sialo cone-beam CT (sialo-CBCT) images.</p><p><strong>Methods: </strong>We developed an end-to-end automatic pipeline consisting of three main steps: (1) region of interest (ROI) computation, (2) parotid gland segmentation using the Frangi filter, and (3) ductopenia case classification with a residual neural network (RNN) augmented by multidirectional maximum intensity projection (MIP) images. To explore the impact of the first two steps, the RNN was trained on three datasets: (1) original MIP images, (2) MIP images with predefined ROIs, and (3) MIP images after segmentation.</p><p><strong>Results: </strong>Evaluation was conducted on 126 parotid sialo-CBCT scans of normal, moderate, and severe ductopenic cases, yielding a high performance of 100% for the ROI computation and 89% for the gland segmentation. Improvements in accuracy and F1 score were noted among the original MIP images (accuracy: 0.73, F1 score: 0.53), ROI-predefined images (accuracy: 0.78, F1 score: 0.56), and segmented images (accuracy: 0.95, F1 score: 0.90). Notably, ductopenic detection sensitivity was 0.99 in the segmented dataset, highlighting the capabilities of the algorithm in detecting ductopenic cases.</p><p><strong>Conclusions: </strong>Our method, which combines classical image processing and deep learning techniques, offers a promising solution for automatic detection of parotid glands ductopenia in sialo-CBCT scans. This may be used for further research aimed at understanding the role of presence and severity of ductopenia in salivary gland dysfunction.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"21-30"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated segmentation and deep learning classification of ductopenic parotid salivary glands in sialo cone-beam CT images.\",\"authors\":\"Elia Halle, Tevel Amiel, Doron J Aframian, Tal Malik, Avital Rozenthal, Oren Shauly, Leo Joskowicz, Chen Nadler, Talia Yeshua\",\"doi\":\"10.1007/s11548-024-03240-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study addressed the challenge of detecting and classifying the severity of ductopenia in parotid glands, a structural abnormality characterized by a reduced number of salivary ducts, previously shown to be associated with salivary gland impairment. The aim of the study was to develop an automatic algorithm designed to improve diagnostic accuracy and efficiency in analyzing ductopenic parotid glands using sialo cone-beam CT (sialo-CBCT) images.</p><p><strong>Methods: </strong>We developed an end-to-end automatic pipeline consisting of three main steps: (1) region of interest (ROI) computation, (2) parotid gland segmentation using the Frangi filter, and (3) ductopenia case classification with a residual neural network (RNN) augmented by multidirectional maximum intensity projection (MIP) images. To explore the impact of the first two steps, the RNN was trained on three datasets: (1) original MIP images, (2) MIP images with predefined ROIs, and (3) MIP images after segmentation.</p><p><strong>Results: </strong>Evaluation was conducted on 126 parotid sialo-CBCT scans of normal, moderate, and severe ductopenic cases, yielding a high performance of 100% for the ROI computation and 89% for the gland segmentation. Improvements in accuracy and F1 score were noted among the original MIP images (accuracy: 0.73, F1 score: 0.53), ROI-predefined images (accuracy: 0.78, F1 score: 0.56), and segmented images (accuracy: 0.95, F1 score: 0.90). Notably, ductopenic detection sensitivity was 0.99 in the segmented dataset, highlighting the capabilities of the algorithm in detecting ductopenic cases.</p><p><strong>Conclusions: </strong>Our method, which combines classical image processing and deep learning techniques, offers a promising solution for automatic detection of parotid glands ductopenia in sialo-CBCT scans. This may be used for further research aimed at understanding the role of presence and severity of ductopenia in salivary gland dysfunction.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"21-30\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03240-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03240-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究解决了检测腮腺导管减少症并对其严重程度进行分类的难题,腮腺导管减少症是一种以唾液腺导管数量减少为特征的结构异常,以前曾被证明与唾液腺功能损害有关。本研究的目的是开发一种自动算法,旨在提高使用虹膜锥束 CT(sialo-CBCT)图像分析腮腺导管缺失症的诊断准确性和效率:方法:我们开发了一种端到端的自动流水线,包括三个主要步骤:(方法:我们开发的端到端自动流水线包括三个主要步骤:(1)感兴趣区(ROI)计算;(2)使用弗兰基滤波器进行腮腺分割;(3)使用多方向最大强度投影(MIP)图像增强的残差神经网络(RNN)进行导管减少症病例分类。为了探索前两个步骤的影响,RNN 在三个数据集上进行了训练:(1) 原始 MIP 图像,(2) 带有预定义 ROI 的 MIP 图像,(3) 分割后的 MIP 图像:对正常、中度和重度腮腺导管闭塞病例的 126 张腮腺ialo-CBCT 扫描图像进行了评估,结果显示,ROI 计算的准确率为 100%,腺体分割的准确率为 89%。原始 MIP 图像(准确率:0.73,F1 分数:0.53)、ROI 预定义图像(准确率:0.78,F1 分数:0.56)和分割图像(准确率:0.95,F1 分数:0.90)的准确率和 F1 分数均有所提高。值得注意的是,在分割数据集中,乳腺导管狭窄的检测灵敏度为 0.99,凸显了该算法检测乳腺导管狭窄病例的能力:我们的方法结合了经典图像处理和深度学习技术,为在颅骨CBCT扫描中自动检测腮腺导管狭窄提供了一种很有前景的解决方案。我们的方法结合了经典图像处理和深度学习技术,为自动检测涎腺CBCT扫描中的腮腺导管缺失症提供了一种有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated segmentation and deep learning classification of ductopenic parotid salivary glands in sialo cone-beam CT images.

Purpose: This study addressed the challenge of detecting and classifying the severity of ductopenia in parotid glands, a structural abnormality characterized by a reduced number of salivary ducts, previously shown to be associated with salivary gland impairment. The aim of the study was to develop an automatic algorithm designed to improve diagnostic accuracy and efficiency in analyzing ductopenic parotid glands using sialo cone-beam CT (sialo-CBCT) images.

Methods: We developed an end-to-end automatic pipeline consisting of three main steps: (1) region of interest (ROI) computation, (2) parotid gland segmentation using the Frangi filter, and (3) ductopenia case classification with a residual neural network (RNN) augmented by multidirectional maximum intensity projection (MIP) images. To explore the impact of the first two steps, the RNN was trained on three datasets: (1) original MIP images, (2) MIP images with predefined ROIs, and (3) MIP images after segmentation.

Results: Evaluation was conducted on 126 parotid sialo-CBCT scans of normal, moderate, and severe ductopenic cases, yielding a high performance of 100% for the ROI computation and 89% for the gland segmentation. Improvements in accuracy and F1 score were noted among the original MIP images (accuracy: 0.73, F1 score: 0.53), ROI-predefined images (accuracy: 0.78, F1 score: 0.56), and segmented images (accuracy: 0.95, F1 score: 0.90). Notably, ductopenic detection sensitivity was 0.99 in the segmented dataset, highlighting the capabilities of the algorithm in detecting ductopenic cases.

Conclusions: Our method, which combines classical image processing and deep learning techniques, offers a promising solution for automatic detection of parotid glands ductopenia in sialo-CBCT scans. This may be used for further research aimed at understanding the role of presence and severity of ductopenia in salivary gland dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
期刊最新文献
Enhanced self-supervised monocular depth estimation with self-attention and joint depth-pose loss for laparoscopic images. SfMDiffusion: self-supervised monocular depth estimation in endoscopy based on diffusion models. Multi-dimensional consistency learning between 2D Swin U-Net and 3D U-Net for intestine segmentation from CT volume. TRUSWorthy: toward clinically applicable deep learning for confident detection of prostate cancer in micro-ultrasound. Mathematical methods for assessing the accuracy of pre-planned and guided surgical osteotomies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1