Jason R McFadden, Iman Salem, Mirjana Stevanovic, Rachael E Barney, Advaita S Chaudhari, Meagan Ann Chambers, Keegan O'Hern, Jeffrey M Cloutier, Shaofeng Yan, Alvaro J Ramos-Rodriguez, Darcy Arendt Kerr, Shabnam Momtahen, Robert E LeBlanc, Gregory J Tsongalis, Edward G Hughes, Aravindhan Sriharan
{"title":"基于液滴数字聚合酶链反应的黑色素瘤诊断辅助工具","authors":"Jason R McFadden, Iman Salem, Mirjana Stevanovic, Rachael E Barney, Advaita S Chaudhari, Meagan Ann Chambers, Keegan O'Hern, Jeffrey M Cloutier, Shaofeng Yan, Alvaro J Ramos-Rodriguez, Darcy Arendt Kerr, Shabnam Momtahen, Robert E LeBlanc, Gregory J Tsongalis, Edward G Hughes, Aravindhan Sriharan","doi":"10.5858/arpa.2024-0027-OA","DOIUrl":null,"url":null,"abstract":"<p><strong>Context.—: </strong>Detecting copy number variations (CNVs) at certain loci can aid in the diagnosis of histologically ambiguous melanocytic neoplasms. Droplet digital polymerase chain reaction (ddPCR) is a rapid, automated, and inexpensive method for CNV detection in other cancers, but not yet melanoma.</p><p><strong>Objective.—: </strong>To evaluate the performance of a 4-gene ddPCR panel that simultaneously tests for ras responsive binding element protein 1 (RREB1) gain; cyclin-dependent kinase inhibitor 2A (CDKN2A) loss; MYC proto-oncogene, bHLH transcription factor (MYC) gain; and MYB proto-oncogene, transcription factor (MYB) loss in melanocytic neoplasms.</p><p><strong>Design.—: </strong>One hundred sixty-four formalin-fixed, paraffin-embedded skin samples were used to develop the assay, of which 65 were used to evaluate its performance. Chromosomal microarray analysis (CMA) data were used as the gold standard.</p><p><strong>Results.—: </strong>ddPCR demonstrated high concordance with CMA in detecting RREB1 gain (sensitivity, 86.7%; specificity, 88.9%), CDKN2A loss (sensitivity, 80%; specificity, 100%), MYC gain (sensitivity, 70%; specificity, 100%), and MYB loss (sensitivity, 71.4%; specificity, 100%). When one CNV was required to designate the test as positive, the 4-gene ddPCR panel distinguished nevi from melanomas with a sensitivity of 78.4% and a specificity of 71.4%. For reference, CMA had a sensitivity of 86.2% and a specificity of 78.6%. Our data also revealed interesting relationships with histology, namely (1) a positive correlation between RREB1 ddPCR copy number and degree of tumor progression; (2) a statistically significant correlation between MYC gain and nodular growth; and (3) a statistically significant correlation between MYB loss and a sheetlike pattern of growth.</p><p><strong>Conclusions.—: </strong>With further validation, ddPCR may aid both in our understanding of melanomagenesis and in the diagnosis of challenging melanocytic neoplasms.</p>","PeriodicalId":93883,"journal":{"name":"Archives of pathology & laboratory medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Droplet Digital Polymerase Chain Reaction-Based Tool to Aid in Melanoma Diagnosis.\",\"authors\":\"Jason R McFadden, Iman Salem, Mirjana Stevanovic, Rachael E Barney, Advaita S Chaudhari, Meagan Ann Chambers, Keegan O'Hern, Jeffrey M Cloutier, Shaofeng Yan, Alvaro J Ramos-Rodriguez, Darcy Arendt Kerr, Shabnam Momtahen, Robert E LeBlanc, Gregory J Tsongalis, Edward G Hughes, Aravindhan Sriharan\",\"doi\":\"10.5858/arpa.2024-0027-OA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context.—: </strong>Detecting copy number variations (CNVs) at certain loci can aid in the diagnosis of histologically ambiguous melanocytic neoplasms. Droplet digital polymerase chain reaction (ddPCR) is a rapid, automated, and inexpensive method for CNV detection in other cancers, but not yet melanoma.</p><p><strong>Objective.—: </strong>To evaluate the performance of a 4-gene ddPCR panel that simultaneously tests for ras responsive binding element protein 1 (RREB1) gain; cyclin-dependent kinase inhibitor 2A (CDKN2A) loss; MYC proto-oncogene, bHLH transcription factor (MYC) gain; and MYB proto-oncogene, transcription factor (MYB) loss in melanocytic neoplasms.</p><p><strong>Design.—: </strong>One hundred sixty-four formalin-fixed, paraffin-embedded skin samples were used to develop the assay, of which 65 were used to evaluate its performance. Chromosomal microarray analysis (CMA) data were used as the gold standard.</p><p><strong>Results.—: </strong>ddPCR demonstrated high concordance with CMA in detecting RREB1 gain (sensitivity, 86.7%; specificity, 88.9%), CDKN2A loss (sensitivity, 80%; specificity, 100%), MYC gain (sensitivity, 70%; specificity, 100%), and MYB loss (sensitivity, 71.4%; specificity, 100%). When one CNV was required to designate the test as positive, the 4-gene ddPCR panel distinguished nevi from melanomas with a sensitivity of 78.4% and a specificity of 71.4%. For reference, CMA had a sensitivity of 86.2% and a specificity of 78.6%. Our data also revealed interesting relationships with histology, namely (1) a positive correlation between RREB1 ddPCR copy number and degree of tumor progression; (2) a statistically significant correlation between MYC gain and nodular growth; and (3) a statistically significant correlation between MYB loss and a sheetlike pattern of growth.</p><p><strong>Conclusions.—: </strong>With further validation, ddPCR may aid both in our understanding of melanomagenesis and in the diagnosis of challenging melanocytic neoplasms.</p>\",\"PeriodicalId\":93883,\"journal\":{\"name\":\"Archives of pathology & laboratory medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of pathology & laboratory medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5858/arpa.2024-0027-OA\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of pathology & laboratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5858/arpa.2024-0027-OA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Droplet Digital Polymerase Chain Reaction-Based Tool to Aid in Melanoma Diagnosis.
Context.—: Detecting copy number variations (CNVs) at certain loci can aid in the diagnosis of histologically ambiguous melanocytic neoplasms. Droplet digital polymerase chain reaction (ddPCR) is a rapid, automated, and inexpensive method for CNV detection in other cancers, but not yet melanoma.
Objective.—: To evaluate the performance of a 4-gene ddPCR panel that simultaneously tests for ras responsive binding element protein 1 (RREB1) gain; cyclin-dependent kinase inhibitor 2A (CDKN2A) loss; MYC proto-oncogene, bHLH transcription factor (MYC) gain; and MYB proto-oncogene, transcription factor (MYB) loss in melanocytic neoplasms.
Design.—: One hundred sixty-four formalin-fixed, paraffin-embedded skin samples were used to develop the assay, of which 65 were used to evaluate its performance. Chromosomal microarray analysis (CMA) data were used as the gold standard.
Results.—: ddPCR demonstrated high concordance with CMA in detecting RREB1 gain (sensitivity, 86.7%; specificity, 88.9%), CDKN2A loss (sensitivity, 80%; specificity, 100%), MYC gain (sensitivity, 70%; specificity, 100%), and MYB loss (sensitivity, 71.4%; specificity, 100%). When one CNV was required to designate the test as positive, the 4-gene ddPCR panel distinguished nevi from melanomas with a sensitivity of 78.4% and a specificity of 71.4%. For reference, CMA had a sensitivity of 86.2% and a specificity of 78.6%. Our data also revealed interesting relationships with histology, namely (1) a positive correlation between RREB1 ddPCR copy number and degree of tumor progression; (2) a statistically significant correlation between MYC gain and nodular growth; and (3) a statistically significant correlation between MYB loss and a sheetlike pattern of growth.
Conclusions.—: With further validation, ddPCR may aid both in our understanding of melanomagenesis and in the diagnosis of challenging melanocytic neoplasms.